首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为四阶实对称矩阵,且A2+2A-3E=O,若r(A-E)=1,则二次型xTAx在正交变换下的标准形为( )
设A为四阶实对称矩阵,且A2+2A-3E=O,若r(A-E)=1,则二次型xTAx在正交变换下的标准形为( )
admin
2019-06-04
43
问题
设A为四阶实对称矩阵,且A
2
+2A-3E=O,若r(A-E)=1,则二次型x
T
Ax在正交变换下的标准形为( )
选项
A、y
1
2
+y
2
2
+y
3
2
-y
4
2
。
B、y
1
2
+y
2
2
+y
3
2
-3y
4
2
。
C、y
1
2
-3y
2
2
-3y
3
2
-3y
4
2
。
D、y
1
2
+y
2
2
-3y
3
2
-3y
4
2
。
答案
B
解析
由A
2
+2A-3E=O有(A-E)(A+3E)=O,从而
r(A-E)+r(A+3E)≤4。
又因为r(A-E)+r(A+3E)=r(E-A)+r(A+3E)
≥r[(E-A)+(A+3E)]
=r(4E)=4,
所以r(A-E)+r(A+3E)=4,则r(A+3E)=3。
于是齐次线性方程组(A-E)x=0与(A+3E)x=0分别有三个和一个线性无关的解,即λ=1与λ=-3分别是矩阵A的三重和一重特征值。故选B。
转载请注明原文地址:https://kaotiyun.com/show/XLc4777K
0
考研数学一
相关试题推荐
设A*是A3×3的伴随矩阵,|A|=.求行列式|(3A)—1一2A*|的值.
设B=(E+A)—1(E—A),则(E+B)—1=_________.
设4元齐次线性方程组(Ⅰ)为,又已知某齐次线性方程组(Ⅱ)的通解为k1(0,1,1,0)+k2(一1,2,2,1).问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.
已知二次型f(x1,x2,x3)=x12—2x22+bx32一4x1x2+4x1x3+2ax2x3(a>0)经正交变换(x1,x2,x3)T=P(y1,y2,y3)T化成了标准形f=一2y12+2y22—7y32,求a、b的值和正交矩阵P.
设幂级数在x=3条件收敛,则该幂级数收敛半径为___________.
设z=z(x,y)由方程x一mz=φ(y一nz)所确定(其中m,n为常数,φ为可微函数),则
设S是平面x+y+z=4被圆柱面x2+y2=1截出的有限部分,则曲面积分的值是
设函数f(x)连续,则F’(x)=
当掷一枚均匀硬币时,问至少应掷多少次才能保证正面出现的频率在0.4至0.6之间的概率不小于0.97试用切比雪夫不等式和中心极限定理来分别求解.
随机试题
下列情况下不宜进行钡餐检查的是:()
患者,男,76岁。因发热、咳嗽、呼吸困难1周来院。查体:体温38.8℃,脉率80次/分,血压140/80mmHg,未见颈静脉充盈,右中下肺叩浊,语音震颤减弱,呼吸音消失,左肺可闻散在干性啰音,心界向左扩大,心律不齐,心率100次/分,未闻杂音,腹(-)。
关于胰腺癌的叙述,正确的是
甲房地产开发公司行为的法律依据是行使( )。同时履行抗辩权和后履行抗辩权的适用条件中完全一致的条件是( )。
金融工具的流动性是指()。
影响企业经营决策和财务关系的主要外部财务环境是()。
西藏某旅行社导游小李接待了外地来西藏游的一行25人,在由贡嘎机场回宾馆的路上,旅游者对公路边所设的“吸氧”点,问小李我们要不要也吸点氧气,小李回答道,大家都吸点氧气肯定对几天的西藏游大有好处。下车后旅游者发现吸一次氧气需要60钱,一些旅游者随即问小李拉萨市
体育课程资源的开发包括哪几个方面?
2011年9月21日上午,乌坎村400多名村民因土地问题、财务问题、选举问题对村干部不满,到陆丰市政府非正常上访,当日下午,上访部分村民在村里及村周边企业聚集、打砸、毁坏他人公共财物和冲击围困村委会、公安边防派出所。次日上午,部分村民组织阻挠、打砸进村维
在画家的笔端,梅兰竹菊,被赋予文人风骨;牡丹荷花,被赋予盛世风范……无论色彩丰富还是清淡,都能读出诗意,读出真诚。要它的_________,有每一笔最自然的亮丽,要它的________,有攀附向上生命力的线条,要它的___________,有花间人的恬淡自
最新回复
(
0
)