首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵 当a为何值时,方程AX=B无解、有唯一解、有无穷多解?在有解时,求解此方程.
设矩阵 当a为何值时,方程AX=B无解、有唯一解、有无穷多解?在有解时,求解此方程.
admin
2018-08-03
29
问题
设矩阵
当a为何值时,方程AX=B无解、有唯一解、有无穷多解?在有解时,求解此方程.
选项
答案
对矩阵[A┆B]施以初等行变换 [*] (1)当a≠1且a≠一2时,矩阵A的秩等于矩阵[A┆B]的秩且等于3,故此时方程Ax=B有唯一解.由 [*] 得方程Ax=B的唯一解为 [*] (2)当a=1时,由于 [*] 记X=[x
1
┆x
2
],则得方程组Ax
1
=[*]: 得方程组Ax
2
=[*], 所以此时方程AX=B有无穷多解,且 X=[x
1
┆x
2
]=[*],其中k
1
,k
2
为任意常数. (3)当a=一2时,由 [*] 可知矩阵A的秩小于矩阵[A┆B]的秩,所以此时方程AX=B无解.
解析
转载请注明原文地址:https://kaotiyun.com/show/wug4777K
0
考研数学一
相关试题推荐
设一次试验成功的概率为p,进行100次独立重复试验,当P=___________时,成功次数的标准差最大,其最大值为___________.
证明:
设A为n阶非奇异矩阵,α是n维列向量,b为常数,P=(1)计算PQ;(2)证明PQ可逆的充分必要条件是αTA-1α≠b.
设α1,α2,…,αt为n个n维向量,证明:α1,α2,…,αt线性无关的充分必要条件是任一n维向量总可由α1,α2,…,αt线性表示.
假设随机事件A与B相互独立,P(A)=P=a一1,P(A∪B)=,求a的值.
选择常数λ取的值,使得向量A(x,y)=2xy(x4+y2)λi-x2(x4+y2)λj在如下区域D为某二元函数u(x,y)的梯度:(Ⅰ)D={(x,y)|y>0},并确定函数u(x,y)的表达式:(Ⅱ)D={(x,y)|x2+y2>0}.
已知正态总体X~N(a,相互独立,其中4个分布参数都未知.设X1,X2,…,Xm和Y1,Y2,…,Yn是分别来自X和Y的简单随机样本,样本均值分别为样本方差相应为,则检验假设H0:a≤b使用t检验的前提条件是
用配方法化二次型x1x2+2x2x3为标准形,并写出所用满秩线性变换.
已知二次型f(x1,x2,x3)=(1一a)+2(1+a)x1x2的秩为2.(Ⅰ)求a的值;(Ⅱ)求正交变换x=Qy,把f(x1,x2,x3)化成标准形;(Ⅲ)求方程f(x1,x2,x3)=0的解.
求正交变换化二次型一2x1x2+2x1x3—2x2x3为标准形,并写出所用正交变换.
随机试题
FrankLloydWrightprobablyisthegreatestarchitectthattheUnitedStateshaseverproduced.Hewasvery【21】andhadanatural
AuniquelaboratoryattheUniversityofChicagoisbusyonlyatnight.Itisadreamlaboratorywhereresearchersare【C1】______
A.思维被夺取B.思维被洞悉C.思维贫乏D.思维散漫E.思维迟缓病人对医生的问题只能在表面上产生反应,缺乏进一步的联想,该症状为
张某与郭某处于婚姻关系的正常存续期间中,二人经常因琐事而激烈争执。有一天二人又开始大吵.郭某就指着墙角的农药说:“这日子没法过了.我喝农药死了算了!”张某回应道,你想死就去死好了。随后出门之际就看到郭某真的在喝农药,但张某还是走出家门去找父母。最后郭某死亡
()是人力资源管理人员进行工作的基础,也是他们区别于其他管理人员的主要标志。
1988年的《巴塞尔报告》规定,银行的核心资本与风险加权资本的比率不得低于()。
设顺序表L是一个递减有序表,试写一算法,将x插入其后仍保持L的有序性。
常用校对软件除了可以检查文字、词语的错误外,还能检查()。
Scientistshavelongspeculatedastotheextentthatinbreedingcontributestothedeclineandeventualextinctionofla
TheIntergovernmentalPanelonClimateChange(IPCC)wassetupin1988toassessinformationonclimatechangeanditsimpact.
最新回复
(
0
)