首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2013年] 设A=.B=,当a,b为何值时,存在矩阵C使得AC—CA=B,并求所有矩阵C.
[2013年] 设A=.B=,当a,b为何值时,存在矩阵C使得AC—CA=B,并求所有矩阵C.
admin
2019-06-09
69
问题
[2013年] 设A=
.B=
,当a,b为何值时,存在矩阵C使得AC—CA=B,并求所有矩阵C.
选项
答案
因所给矩阵方程不易化为式(2.2.4.1)中三种类型的矩阵方程,下用待定元素法求之.为此设出矩阵C中的元素,将方程AC—CA=B;化为一非齐次线性方程解之. 设C=[*],则AC=[*] [*] 由AC—CA=B得到四元非齐次线性方程组: [*] ① 存在矩阵C使AC—CA=B成立,上述方程组必有解.为此将上述方程组的增广矩阵[*]用初等行变换化为阶梯形矩阵: [*] 当a≠一1或b≠0时,因秩([*])≠秩(A),方程组无解. 当a=一l且b=0时,秩([*])=秩(A)=2<n=4,方程组有解,且有无穷多解.由基础解系和特解的简便求法得到,其基础解系为 α
1
=[1,a,1,0]
T
=[1,一1,l,0]
T
,α
2
=[1,0,0,1]
T
, 则对应齐次线性方程组的通解为c
1
α
1
+c
2
α
2
. 而方程组①的特解为[1,0,0,0]
T
,故方程组①的通解为 X=c
1
[1,一1,1,0]
T
+c
2
[1,0,0,1]
T
+[1,0,0,0]
T
, 即X=[x
1
,x
2
,x
3
,x
4
]
T
=[c
1
+c
2
+l,-c
1
,c
1
,c
2
]
T
,亦即x
1
=c
1
+c
2
+1,x
2
=一c
1
,x
3
=c
1
,x
4
=c
2
(c
1
,c
2
为任意常数),故所求的所有矩阵为 C=[*](c
1
,c
2
为任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/XeV4777K
0
考研数学二
相关试题推荐
求下列积分:
设fn(x)=x+x2+…一xn,n=2,3,….(1)证明方程fn(x)=1在[0,+∞)有唯一实根xn;(2)求.
计算定积分
设A为n阶非零矩阵,且存在自然数k,使得Ak=0.证明:A不可以对角化.
设f(μ,ν)具有连续偏导数,且fμ’(μ,ν)+fν’(μ,ν)=sin(μ+ν)eμ+ν,求y(x)=e-2xf(x,x)所满足的一阶微分方程,并求其通解。
函数y=与直线x=0,x=t(t>0)及y=0围成一曲边梯形。该曲边梯形绕x轴旋转一周得一旋转体,其体积为V(t),侧面积为S(t),在x=t处的底面积为F(t)。求的值;
求极限。
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记证明二次型f对应的矩阵为2ααT+ββT;
已知α1=(1,1,一1)T,α2=(1,2,0)T是齐次线性方程组Ax=0的基础解系,那么下列向量中Ax=0的解向量是()
设y=f(x)=(1)讨论f(x)在x=0处的连续性;(2)f(x)在何处取得极值?
随机试题
病毒对细胞的感染具备下列哪一特点
关于药师在药方中进行的特殊调剂,下列说法错误的是
产品生命周期是指某一个工业产品()所经历的时间
气象条件不良是作业场所存在的一类物理性职业病危害因素。下列职业病中,属于由异常气象条件引起的职业病的是()
M银行为增值税一般纳税人,2017年第4季度办理公司业务,收取结算手续费(含税)31.8万元,收取账户管理费(含税)26.5万元;办理贷款业务,取得利息收入(含税)1.06亿元;吸收存款8亿元。根据增值税法律制度的规定,M银行第4季度应确认的销项税额为(
企业所售商品由于不符合要求被退回时,下列各项会计处理中,正确的有()。
一件PCT国际申请,国际申请日是2017年3月29日,优先权日是2016年4月11日。国际检索单位于2017年7月17日将国际检索报告传送给国际局和申请人。根据专利合作条约第19条的规定,对权利要求书提出修改的最晚期限是?
下列关于UNIX说法错误的是______。
十进制整数100转换成无符号二进制整数是()。
TheMuseumofContemporary(当代的)Art(MOCA)hasstartedanewseriesofprograms,knownas“ArtMakesGoodBusiness.“Itisdesigned
最新回复
(
0
)