首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知(1,-1,1,-1)T是线性方程组的一个解,试求 (1)该方程组的全部解,并用对应的齐次线性方程组的基础解系表示全部解; (2)该方程组满足χ2=χ3的全部解.
已知(1,-1,1,-1)T是线性方程组的一个解,试求 (1)该方程组的全部解,并用对应的齐次线性方程组的基础解系表示全部解; (2)该方程组满足χ2=χ3的全部解.
admin
2017-06-26
47
问题
已知(1,-1,1,-1)
T
是线性方程组
的一个解,试求
(1)该方程组的全部解,并用对应的齐次线性方程组的基础解系表示全部解;
(2)该方程组满足χ
2
=χ
3
的全部解.
选项
答案
将解向量χ=(1,-1,1,-1)
T
代入方程组,得λ=μ,对方程组的增广矩阵施行初等行变换: [*] (1)当λ≠[*]时,有 [*] 因r(A)=r([*])=3<4,故方程组有无穷多解,全部解为 χ=[*]+k(-2,1,-1,2)
T
,其中k为任意常数. 当λ=[*]时,有 [*] 因r(A)=r([*])=2<4,故方程组有无穷多解,全部解为 χ=(-[*],1,0,0)
T
+k
1
(1,-3,1,0)
T
+k
2
(-1,-2,0,2)
T
,其中k
1
,k
2
为任意常数. (2)当λ≠[*]时,由于χ=χ,即[*],解得k=[*], 故此时,方程组的解为 χ=[*] =(-1,0,0,1)
T
. 当λ=[*]时,由于χ
2
=χ
3
,即1-3k
1
-2k
2
=k
1
,解得k
2
=[*]-2k
1
, 故此时全部解为 χ=[*]+k
1
(1,-3,1,0)
T
+([*]-2k
1
)(-1,-2,0,2)
T
=(-1,0,0,1)+k
1
(3,1,1,-4)
T
.
解析
转载请注明原文地址:https://kaotiyun.com/show/XjH4777K
0
考研数学三
相关试题推荐
已知齐次线性方程组其中,试讨论a1,a2…an和b满足何种关系时:(Ⅰ)方程组仅有零解;(Ⅱ)方程组有非零解,在有非零解时,求此方程组的一个基础解系.
向量组a1,a2,…,am线性无关的充分必要条件是().
设X1,X2,…,Xn是总体为N(μ,σ2)的简单随机样本,记(Ⅱ)证明T是μ2的无偏估计量;(Ⅱ)当μ=0,σ=l时,求D(T).
已知3阶矩阵B为非零向量,且B的每一个列向量都是方程组(Ⅰ)求λ的值;(Ⅱ)证明|B|=0.
在经济学中,称函数Q(x)=A[δK-x+(1-δ)L-x]-(1/x)为固定替代弹性生产函数,而称函数生产函数(简称C-D生产函数).试证明:当x→0时,固定替代弹性生产函数变为C-D生产函数,即有
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为a1,a2则a1,A(a1+a2)线性无关的充分必要条件是().
证明方程在区间(0,+∞)内有且仅有两个不同实根.
方程yy’’=1+y’2满足初始条件y(0)=1,y’(0)=0的通解为__________.
随机试题
撤销党内职务处分,是指撤销受处分党员由党内选举或者组织任命的党内各种职务。()
在氯碱生产三效四体二段蒸发工序中,一效二次蒸汽送往二效加热室,二效二次蒸汽送往三效加热室,三效二次蒸汽送往四效加热室。()
HaveyoueverwatchedahomeshoppingprogramonTV?Canyoudescribe【C1】______it’sliketoshopathomebytelevision?Haveyo
根据降血糖作用机制,阿卡波糖属于
小儿肺的呼吸功能,下列哪项不正确
下列各项中,会引起应收账款账面价值发生增减变动的有()。
【2015年安徽.判断】教材是教学活动可以利用的唯一资源。()
下列名言与作者的对应关系不正确的一项是()。
Alotofpeoplebelievethattelevisionhasaharmfuleffectonchildren.Afewyearsago,thesamecriticismsweremadeofthe
Politicalinstitutionsdevelopwhenthecomplexityofthesocietyreachesthepointatwhichkinshiporganizationcannolonger
最新回复
(
0
)