首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:与基础解系等价的线性无关的向量组也是基础解系.
证明:与基础解系等价的线性无关的向量组也是基础解系.
admin
2018-06-27
74
问题
证明:与基础解系等价的线性无关的向量组也是基础解系.
选项
答案
设Ax=0的基础解系是α
1
,α
2
,…,α
t
.若β
1
,β
2
,…,β
s
线性无关,β
1
,β
2
,…,β
s
与α
1
,α
2
,…,α
t
等价. 由于β
j
(j=1,2,…,s)可以由α
1
,α
2
,…,α
t
线性表示,而α
i
(i=1,…,t)是Ax=0的解,所以β
j
(j=1,2,…,s)是Ax=0的解. 因为α
1
,α
2
,…,α
t
线性无关,秩r(α
1
,α
2
,…,α
t
)=t,又α
1
,α
2
,…,α
t
与β
1
,β
2
,…,β
s
等价,所以r(β
1
,β
2
,…,β
s
)=r(α
1
,α
2
,…,α
t
)=t.又因β
1
,β
2
,…,β
s
线性无关,故s=t. 因此β
1
,β
2
,…,β
t
是Ax=0的基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/Xlk4777K
0
考研数学二
相关试题推荐
设D是位于曲线(a>1,0≤x<+∞)下方、x轴上方的无界区域.(1)求区域D绕x轴旋转一周所成旋转体的体积V(a);(2)当a为何值时,V(a)最小?并求此最小值.
已知向量组α1=(1,2,=1,1),α2=(2,0,t,0),α3=(0,-4,5,-2)的秩为2,则t=________.
设,其中c1,c2,c3,C4为任意常数,则下列向量组线性相关的为
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是
设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f’(x)>0.若极限存在,证明:(1)在(a,b)内f(x)>0;(2)在(a,b)内存在点ξ,使;(3)在(a,b)内存在与(2)中ξ相异的点η,使f’(η)(b2-a2)=。
设函数S(x)=∫0x|cost|dt,(1)当n为正整数,且nπ≤x<(n+1)π时,证明:2n≤S(x)<2(n+1);(2)求.
设0<x1<3,xn+1=(n=1,2,…),证明数列{xn}的极限存在,并求此极限.
已知A=(α1,α2,α3,α4)是4阶矩阵,α1,α2,α3,α4是4维列向量,若方程组Ax=β的通解是(1,2,2,1)T+k(1,一2,4,0)T,又B=(α3,α2,α1,β一α4).求方程组Bx=αl—α2的通解.
已知A是2×4矩阵,齐次方程组Ax=0的基础解系是η1=(1,3,0,2)T,η2=(1,2,一1,3)T,又知齐次方程组Bx=0的基础解系是β1=(1,1,2,1)T,β2=(0,一3,1,α)T,求矩阵A;
设A是m×n矩阵,且方程组Ax=b有解,则
随机试题
不属于失业保险基本功能的有()
试述脾功能亢进的诊断标准。
A.Na+B.K+C.Ca2+D.Cl-E.Mg2+在肠道和肾小管管腔中.与葡萄糖实现联合转运的主要离子是
《孟子》中说:“下者为巢,上者为营窟。”其中“下”的意思是()。
煤矿安全监察体制的特点()。
按联结的基础产品分类,结构化金融衍生产品可分为()。Ⅰ.股权联结型产品Ⅱ.利率联结型产品Ⅲ.汇率联结型产品Ⅳ.商品联结型产品
下列各项属于青少年发展性需要的是()
劳动法律关系的主要形态是()。
我国公务员制度同西方文官制度强调的文官“政治中立”具有本质区别的是()。
Ifyou’vebeenoncampusforverylong,I’mcertainthatyou’vealreadyheardaboutthiscourse.Youmayknowthatlastsemester
最新回复
(
0
)