首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设γ1,γ2,…,γt和η1,η2…ηs分别是Ax=0和Bx=0的基础解系.证明:Ax=0和Bx=0有非零公共解的充要条件是γ1,γ2,…,γt,η1,η2,…,ηs线性相关.
设γ1,γ2,…,γt和η1,η2…ηs分别是Ax=0和Bx=0的基础解系.证明:Ax=0和Bx=0有非零公共解的充要条件是γ1,γ2,…,γt,η1,η2,…,ηs线性相关.
admin
2018-09-20
54
问题
设γ
1
,γ
2
,…,γ
t
和η
1
,η
2
…η
s
分别是Ax=0和Bx=0的基础解系.证明:Ax=0和Bx=0有非零公共解的充要条件是γ
1
,γ
2
,…,γ
t
,η
1
,η
2
,…,η
s
线性相关.
选项
答案
充分性 由γ
1
,γ
2
,…,γ
t
,η
1
,η
2
,…,η
s
线性相关,知存在不全为零的一组数k
1
,k
2
,…, k
t
,l
1
,l
2
,…,l
s
,使得 k
1
γ
1
+k
2
γ
2
+…+k
t
γ
t
+…+k
t
γ
t
+l
1
η
1
+l
2
η
2
+…+l
s
η
s
=0. 令ξ=k
1
γ
1
+k
2
γ
2
++…+k
t
γ
t
,则ξ≠0(否则k
1
,k
2
,…,k
t
,l
1
,l
2
,…,l
s
全为0),且ξ=-l
1
η
1
-l
2
η
2
一…-l
s
η
s
, 即非零向量ξ既可由γ
1
,γ
2
,…,γ
t
表示,也可由η
1
,η
2
,…,η
s
表示,所以Ax=0和Bx=0有非零公共解. 必要性 若Ax=0和Bx=0有非零公共解,假设为ξ≠0,则ξ=k
1
γ
1
+k
2
γ
2
+…+k
t
γ
t
,且 ξ=-l
1
η
1
一l
2
η
2
-…一l
s
η
s
,于是,存在k
1
,k
2
,…,k
t
不全为零,存在l
1
,l
2
,…,l
s
不全为零,使得 k
1
γ
1
+k
2
γ
2
+…+k
t
γ
t
+l
1
η
1
+l
2
η
2
+…+l
s
η
s
=0. 从而γ
1
,γ
2
,…,γ
t
,η
1
,η
2
,…,η
s
线性相关.
解析
转载请注明原文地址:https://kaotiyun.com/show/YRW4777K
0
考研数学三
相关试题推荐
设f(x)连续,证明:
设f(x)在[a,b]上有连续的导函数,且f(b)=0,当x∈[a,b]时|f’(x)|≤M,证明:
设函数z=(1+ey)cosx-yey,证明:函数z有无穷多个极大值点,而无极小值点.
(u,y,z)具有连续偏导数,而x=rsinφcosθ,y=rsinφsinθ,z=rcosφ.(Ⅰ)若,试证明u仅为φ与θ的函数;(Ⅱ)若,试证明u仅为r的函数.
设f(x)在[a,b]可导,且f’+(a)与f’-(b)反号,证明:存在ξ∈(a,b)使f’(ξ)=0.
设函数f(x)在[a,+∞)上连续,f’’(x)在(a,+∞)内存在且大于零.记F(x)=.证明:F(x)在(a,+∞)内单调增加.
设f(x)在[0,1]上连续,在(0,1)内可导,且|f’(x)|<1,又f(0)=f(1),证明:对于,x2∈[0,1],有
已知A2=0,A≠0,证明A不能相似对角化.
设函数f(x)在[0,1]上具有二阶导数,且f(0)=f(1)=0,=-1.证明:
随机试题
现代意义的财产税始创于()
foreigncurrencyreserves
急性失血时,最先出现的代偿反应是
患儿,10岁。课间活动时,突然两眼凝视,呆立不动,呼之不应,持续约10秒后恢复正常。以往有类似发作。考虑为
甲的丈夫强奸了丙,案发后甲多次找到丙,要求丙将强奸说成通奸,并拿出5000元作为给丙的“改口”补偿,丙未同意。甲便将丙拉到家中,强迫丙按照其事先写好的说明是通奸的材料抄写一份并按上指印。丙仍不同意,甲便一直不允许丙离开,4天后丙才被警察解救。关于甲的行为定
国产水准仪按精度不同划分为()个等级。
提高企业经营安全性的途径有()。
在下列描述中,对有效资本市场涵义的描述不正确的是()。
考生文件夹下存在一个数据库文件“samp2.accdb”,里面已经设计好“tCourse”、“tGrade”、“tStudent”三个关联表对象和一个空表“tSinfo”,试按以下要求完成设计:创建一个查询,计算每名学生所选课程的学分总和,并依次显示“
PeopleinthemassadvertisingbusinessandotherswhostudyAmericansocietyhavebeenveryinterestedinthequestion:Whatdo
最新回复
(
0
)