首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设γ1,γ2,…,γt和η1,η2…ηs分别是Ax=0和Bx=0的基础解系.证明:Ax=0和Bx=0有非零公共解的充要条件是γ1,γ2,…,γt,η1,η2,…,ηs线性相关.
设γ1,γ2,…,γt和η1,η2…ηs分别是Ax=0和Bx=0的基础解系.证明:Ax=0和Bx=0有非零公共解的充要条件是γ1,γ2,…,γt,η1,η2,…,ηs线性相关.
admin
2018-09-20
33
问题
设γ
1
,γ
2
,…,γ
t
和η
1
,η
2
…η
s
分别是Ax=0和Bx=0的基础解系.证明:Ax=0和Bx=0有非零公共解的充要条件是γ
1
,γ
2
,…,γ
t
,η
1
,η
2
,…,η
s
线性相关.
选项
答案
充分性 由γ
1
,γ
2
,…,γ
t
,η
1
,η
2
,…,η
s
线性相关,知存在不全为零的一组数k
1
,k
2
,…, k
t
,l
1
,l
2
,…,l
s
,使得 k
1
γ
1
+k
2
γ
2
+…+k
t
γ
t
+…+k
t
γ
t
+l
1
η
1
+l
2
η
2
+…+l
s
η
s
=0. 令ξ=k
1
γ
1
+k
2
γ
2
++…+k
t
γ
t
,则ξ≠0(否则k
1
,k
2
,…,k
t
,l
1
,l
2
,…,l
s
全为0),且ξ=-l
1
η
1
-l
2
η
2
一…-l
s
η
s
, 即非零向量ξ既可由γ
1
,γ
2
,…,γ
t
表示,也可由η
1
,η
2
,…,η
s
表示,所以Ax=0和Bx=0有非零公共解. 必要性 若Ax=0和Bx=0有非零公共解,假设为ξ≠0,则ξ=k
1
γ
1
+k
2
γ
2
+…+k
t
γ
t
,且 ξ=-l
1
η
1
一l
2
η
2
-…一l
s
η
s
,于是,存在k
1
,k
2
,…,k
t
不全为零,存在l
1
,l
2
,…,l
s
不全为零,使得 k
1
γ
1
+k
2
γ
2
+…+k
t
γ
t
+l
1
η
1
+l
2
η
2
+…+l
s
η
s
=0. 从而γ
1
,γ
2
,…,γ
t
,η
1
,η
2
,…,η
s
线性相关.
解析
转载请注明原文地址:https://kaotiyun.com/show/YRW4777K
0
考研数学三
相关试题推荐
设f(x)连续,证明:
设f(x)在[a,b]上有连续的导函数,且f(b)=0,当x∈[a,b]时|f’(x)|≤M,证明:
设f(x)在[0,1]上连续,在(0,1)内可导,且|f’(x)|<1,又f(0)=f(1),证明:对于,x2∈[0,1],有
已知A2=0,A≠0,证明A不能相似对角化.
设3阶矩阵A的特征值λ=1,λ=2,λ=3对应的特征向量依次为α1=(1,1,1)T,α2=(1,2,4)T,α3=(1,3,9)T.(Ⅰ)将向量β=(1,1,3)T用α1,α2,α3线性表出:(Ⅱ)求Anβ.
设函数f(x)在[0,1]上具有二阶导数,且f(0)=f(1)=0,=-1.证明:
随机试题
行政机关及其工作人员管理国家公共事务的行政权力必须依据法律而获取与行使,不得恣意妄为的一种公共行政的普遍原则和社会控制方式被称为()
二型观测线测出的倒凹区主要位于基牙的
嗜酸性粒细胞增多的血管炎症是
维生素B1缺乏导致心衰的机制是心肌()。
(2014年)三管型测速仪上的两侧方向管的斜角,可以外斜也可以内斜。在相同条件下,外斜的测压管比内斜的灵敏度()。
我国银行监管的基本理念是()。我国市场准入监管中规定,设立商业银行的注册资本最低限额为()亿元。
存款货币银行负债管理的主要内容有( )。
材料:高三复习时,某教师通过如下试题考查学生的概念掌握情况。某研究小组将泡胀的绿豆种子放在盛有湿润纸巾的透明玻璃瓶中,然后密封,将玻璃瓶置于温暖有光照的地方,如图所示。十天后,绿豆种子长成绿色幼苗。有同学根据这一情境联想到了“种子”“萌发”“水
清代三大木版年画产地是________、________、________。
TheinventionofirrigationismeaningfulbecauseitcouldhelptoWhichoffollowingtendstowarmtheclimate?
最新回复
(
0
)