首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设四元齐次线性方程组(I)为又已知某齐次线性方程组(Ⅱ)的通解为k1[0,1,1,0]T+k2[一1,2,2,1]T.(1)求线性方程组(I)的基础解系;(2)问线性方程组(I)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.
设四元齐次线性方程组(I)为又已知某齐次线性方程组(Ⅱ)的通解为k1[0,1,1,0]T+k2[一1,2,2,1]T.(1)求线性方程组(I)的基础解系;(2)问线性方程组(I)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.
admin
2019-07-19
54
问题
设四元齐次线性方程组(I)为
又已知某齐次线性方程组(Ⅱ)的通解为k
1
[0,1,1,0]
T
+k
2
[一1,2,2,1]
T
.(1)求线性方程组(I)的基础解系;(2)问线性方程组(I)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.
选项
答案
[*] x=一k
2
[0,1,1,0]
T
+k
2
[一1,2,2,1]
T
=k
2
[一1,1,1,1]
T
=k[-1,1,1,1]
T
,其中k为任意非零常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/YVc4777K
0
考研数学一
相关试题推荐
设F(x,y,z)有连续偏导数,求曲面S:点(x0,y0,z0)处的切平面方程,并证明切平面过定点.
判断下列结论是否正确?为什么?(Ⅰ)若函数f(x),g(x)均在x0处可导,且f(x0)=g(x0),则f’(x0)=g’(x0);(Ⅱ)若x∈(x0一δ,x0+δ),x≠x0时f(x)=g(x),则f(x)与g(x)在x=x0处有相同
求.
设f(x)在(a,b)内可导,证明:x,x0∈(a,b)且x≠x0时,f’(x)在(a,b)单调减少的充要条件是f(x0)+f’(x0)(x一x0)>f(x).(*)
设随机变量X与Y相互独立且都服从标准正态分布N(0,1),则()
设3阶实对称矩阵A的特征值为1,2,3,η1=(一1,一1,1)T和η2=(1,一2,一1)T分别是属于1和2的特征向量,求属于3的特征向量,并且求A.
A是3阶实对称矩阵,A2=E,如果r(A+E)=2,求A的相似对角形,并计算行列式|A+2E|的值.
已知向量组α1,α2,α3,α4线性无关,则命题正确的是
设f(x,y)在(x0,y0)邻域存在偏导数且偏导数在点(x0,y0)处不连续,则下列结论中正确的是
已知总体X是离散型随机变量,X可能取值为0,1,2,且P{X=2}=(1-θ)2,EX=2(1-θ)(0为未知参数).(Ⅰ)试求X的概率分布;(Ⅱ)对X抽取容量为10的样本,其中5个取1,3个取2,2个取0,求θ的矩估计值、最大似然估计
随机试题
组织变革的动因与目标是什么?
A.内侧膝状体B.外侧膝状体C.腹后内侧核D.腹外侧核E.腹后外侧核接受头面部浅深感觉冲动的结构是()
下列哪些情形不符合有关政府采购的法律规定?
施工总承包单位与建设单位于2008年2月20日签订了某二十层综合办公楼工程施工合同。合同中约定:①人工费综合单价为45元/工日;②一周内非承包方原因停水、停电造成的停工累计达8小时可顺延工期一天;③施工总承包单位须配有应急备用电源。工程于3月15日开工,施
十八届四中全会上指出,深入开展党风廉政建设和反腐败斗争,严格落实党风廉政建设党委主体责任和纪委监督责任。在党的建设中最早使用“作风”一词的是:
第三世界崛起的标志是()。
以下关于沟固位形的说法哪项是错误的()。
贯彻“三个代表”本质在于()
刘国平是上海某高新技术企业的总经理,现在他需要了解某些有关高新技术企业的政策,以便作出战略决策。于是,他指示总经理办公室的小马,尽快整理出一份有关高新技术企业的政策文件并交给他。请参照“示例1.jpg”和“示例2.jpg”,利用考生文件夹下提供的相关素材文
A、None.B、Once.C、Twice.D、Fourtimes.D根据男士的回答“foursummers”可知,男士去野营四次了,故选D。
最新回复
(
0
)