首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设方程y’+P(x)y=x2,其中P(x)=求在(一∞,+∞)内的连续函数y=y(x),使之在(一∞,+∞)内都满足方程,且满足初值条件y(0)=2.
设方程y’+P(x)y=x2,其中P(x)=求在(一∞,+∞)内的连续函数y=y(x),使之在(一∞,+∞)内都满足方程,且满足初值条件y(0)=2.
admin
2021-08-02
85
问题
设方程y’+P(x)y=x
2
,其中P(x)=
求在(一∞,+∞)内的连续函数y=y(x),使之在(一∞,+∞)内都满足方程,且满足初值条件y(0)=2.
选项
答案
本题的特色在于当x的取值范围不同时,系数P(x)不同,这样所求解的方程就不一样,解的形式自然也会不一样,最后要根据解y=y(x)是连续函数,确定任意常数. 当x≤1时,方程及其初值条件为[*]解得 y=e
—∫1dx
(∫x
2
e
∫1dx
dx+C
1
)一e
—x
(x
2
e
x
dx+C
1
)=x
2
—2x+2+C
1
e
—x
. 由y(0)=2得C
1
=0,故y=x
2
一2x+2. 当x>1时,方程为y’+[*]=x
2
,解得 [*] 综上,得 [*] 又y(x)在(一∞,+∞)内连续,有y(1
—
)=y(1
+
)=y(1),即1—2+2一[*]+C,从而C=[*]. 所以 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/YXy4777K
0
考研数学二
相关试题推荐
已知函数y=f(x)对一切的x满足xf’’(x)+3x[f’(x)]2=1一e-x,若f’(x0)=0(x0≠0),则()
设函数f(x)连续,且f’(0)>0,则存在δ>0使得().
设f(x)连续,f(0)=1,f’(0)=2.下列曲线与曲线y=f(x)必有公共切线的是()
设二元函数f(x,y)的二阶偏导数连续,且满足f’’xx(x,y)=f’’yy(x,y),f(x,2x)=x2,f’x(x,2z)=x,求f’’xx(x,2x).
设f(u,v)具有连续偏导数,且fu’(u,v)+fu’(u,v)=sin(u+v)eu+v,求y(x)=e-2xf(x,x)所满足的一阶微分方程,并求其通解
在下列二元函数中,f’’xy(0,0)≠f’’yx(0,0)的二元函数是
向量组α1,α2,…,αs线性无关的充要条件是()
设f(χ)可导,且F(χ)=f(χ)(1+|sinχ|),则f(0)=0是F(χ)在χ=0处可导的()条件.【】
设α1,α2,α3,α4为四维非零列向量组,令A=(α1,α2,α3,α4),AX=0的通解为Xk(0,-1,3,0)T,则A*X=0的基础解系为().
随机试题
根据《建设工程项目管理规范》(GB/T50326—2006),施工企业项目经理在承担项目施工管理过程中,应具有的权限有( )。
救助失血过多出现休克的伤员要采取保暖措施
下列选项中不属于按照劳动合同期限划分的劳动合同类型是()
47岁妇女,孕3产1,近2年来月经周期紊乱,经量时多时少,最近闭经3个月后阴道淋漓出血半个多月来医院就诊。以下检查中可考虑无排卵功血,但除外
患者,男,36岁。因胃、十二指肠溃疡急性穿孔合并腹膜炎而症见:上腹部持续性剧痛,腹胀,拒按,伴发热恶寒,恶心呕吐,大便于结,小便黄赤,舌红苔黄腻,脉洪数。其证型是
在项目实施过程中根据情况的变化进行项目目标的()。
对于“规定和调整商业银行和其他存款性金融机构上缴中央银行的存款准备金率”所起作用的表述,错误的是()
下列不属于正式程序的是()。
小王参加了五门百分制的测验,每门成绩都是整数。其中语文94分,数学的得分最高,外语的得分等于语文和物理的平均分,物理的得分等于五门的平均分,化学的得分比外语多2分,并且是五门中第二高的得分。问小王的物理考了多少分?()
Themostsurprisingaspectofthemodernman’sgoodconscienceisthatheassertsandjustifiesitintermsofthemostvarieda
最新回复
(
0
)