首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,在(0,1)内可导,且ef(x)arctanxdx=1,f(1)=ln2,试证:存在点ξ∈(0,1),使得 (1+ξ2)f’(ξ)arctanξ=一1.
设f(x)在[0,1]上连续,在(0,1)内可导,且ef(x)arctanxdx=1,f(1)=ln2,试证:存在点ξ∈(0,1),使得 (1+ξ2)f’(ξ)arctanξ=一1.
admin
2017-07-26
57
问题
设f(x)在[0,1]上连续,在(0,1)内可导,且
e
f(x)
arctanxdx=1,f(1)=ln2,试证:存在点ξ∈(0,1),使得
(1+ξ
2
)f’(ξ)arctanξ=一1.
选项
答案
令F(x)=e
f(x)
arctanx.由已知条件,F(1)=e
f(x)
arctan1=[*]e
f(x)
arctanxdx=1.由积分中值定理,存在点η∈[0,[*].于是,F(x)在[η,1]上连续,在(η,1)内可导,由洛尔定理,存在点ξ∈(η,1)[*](0,1),使得F’(ξ)=0,即(1+ξ
2
)f’(ξ)arctanξ=一1.
解析
所以,可作辅助函数F(x)=e
f(x)
arctanx,用洛尔定理证明.
转载请注明原文地址:https://kaotiyun.com/show/YuH4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 D
设n阶矩阵A与B等价,则必有().
设y(x)为微分方程y’’-4y’+4y=0满足初始条件y(0)=0,y’(0)=2的特解,则∫01y(x)dx=__________.
设A是n阶反对称矩阵,证明:A可逆的必要条件是n为偶数;当n为奇数时,A*是对称矩阵;
设向量组a1,a2,a3线性相关,向量组a2,a3,a4线性无关,问:(Ⅰ)a1能否由a2,a3,线性表出?证明你的结论.(Ⅱ)a4能否由a1,a2,a3铴线性表出?证明你的结论.
向量组a1,a2,…,as线性无关的充分条件是().
设二次型f(x1,x2,x3)=x12+x22+x32一2x1x2一2x1x4+2ax2x3(a<0)通过正交变换化为标准形2y12+2y22+by32.(I)求常数a,b;(Ⅱ)求正交变换矩阵;(Ⅲ)当|X|=1时,求二次
设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(6)=0,证明:存在ξ∈(a,b),使得f’(ξ)+f(ξ)g’(ξ)=0.
对于任意二事件A1,A2,考虑二随机变量试证明:随机变量X1和X2独立的充分必要条件是事件A1和A2相互独立.
随机试题
社会工作者:“小萍,我们归纳一下,你刚才讲的主要有两点,第一是疫情期间在家上网课,缺少学校氛围,有点松懈,学习状态和效率都让你不满意;第二是明年要毕业了,究竟是考研出国还是回老家找份工作,你有点迷茫。你看我说的有遗漏吗?”上述表述中,社会工作者运用的谈话技
两种材料界面上的反射因子大小主要取决于声波穿过界面时的什么变化()
A.应取得《进口药品注册证》B.应凭《医药产品注册证》C.应取得《进口准许证》D.应取得《药品经营许可证》E.应取得《进口药品通关单》依照《中华人民共和国药品管理法实施条例》
静脉采血取检验样本,首先应该采取下列哪种样本?()
根据材料,下列说法中正确的有()。Ⅰ.2008年山东省城乡居民分类消费价格与居民消费分类价格变化趋势完全一致Ⅱ.2008年山东省居民各种食品消费中,城市价格变化均小于农村Ⅲ.2008年在图中所示的几个价格指数中,山东省原材料、燃料、动力购
物业管理应用文书的类型不包括()。
《红梅赞》是歌剧()的主题歌。
数据库管理系统管理并且控制______资源的使用。
以下叙述中正确的是()。
Inthecauseofequalrights,feminists(女权主义者)havehadmuchtocomplainabout.Butonestrikingpieceofinequalityhasbeen【C1】
最新回复
(
0
)