首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量X,Y相互独立且都服从N(μ,σ2)分布,令Z=max{X,Y),求E(Z).
设随机变量X,Y相互独立且都服从N(μ,σ2)分布,令Z=max{X,Y),求E(Z).
admin
2019-11-25
47
问题
设随机变量X,Y相互独立且都服从N(μ,σ
2
)分布,令Z=max{X,Y),求E(Z).
选项
答案
因为X,Y都服从N(μ,σ
2
)分布,所以U=[*]~N(0,1),V=[*]~N(0,1), 且U,V相互独立,则X=σU+μ,Y=σV+μ,故Z=max{X,Y}=σmax{U,V}+μ, 由U,V相互独立得(U,V)的联合密度函数为f(u,v)=[*](-∞<u,v<+∞). 于是E(Z)=σE[max{U,V}]+μ. 而E[max(U,V)]=[*]max{u,v)f(u,v)dv =2[*]r
2
cosθ×[*]dr=[*]cosθdθ[*]r
2
[*]dr =[*]r
2
[*]dr[*]e
-t
dt=[*], 故E(Z)=σE[max{U,V)]+μ=[*]+μ.
解析
转载请注明原文地址:https://kaotiyun.com/show/ZBD4777K
0
考研数学三
相关试题推荐
设A是3阶实矩阵,λ1,λ2,λ3是A的三个不同的特征值,ξ1,ξ2,ξ3是三个对应的特征向量.证明:当λ2λ3≠0时,向量组ξ1,A(ξ1+ξ2),A2(ξ1+ξ2+ξ3)线性无关.
设函数f(x)与g(x)在(a,b)上可导,考虑下列叙述:①若f(x)>g(x),则f’(x)>g’(x);②若f’(x)>g’(x),则f(x)>g(x),则()
设f(x),g(x)在[a,b]上二阶可导,且f(a)=f(b)=g(a)=0.证明:存在ξ∈(a,b),使f"(ξ)g(ξ)+2f’(ξ)g’(ξ)+f(ξ)g"(ξ)=0.
设函数f(x)在[a,b]上有连续导数,在(a,b)内二阶可导,且f(a)=f(b)=0,∫abf(x)dx=0.证明:(1)在(a,b)内至少存在一点ξ,使得f’(ξ)=f(ξ);(2)在(a,b)内至少存在一点η,且η≠ξ,使得f"(η)=f(η)
设n维行向量矩阵A=E一αTα,B=E+2αTα,则AB=()
设顾客在某银行窗口等待服务的时间X(单位:分钟)服从参数为的指数分布.若等待时间超过10分钟,他就离开.设他一个月内要来银行5次,以Y表示一个月内他没有等到服务而离开窗口的次数,求Y的分布律及P{Y≥1).
已知y1=xex+e2x和y2=xex+e-x是某二阶常系数非齐次线性微分方程的两个解,则此方程为()
设随机变量(X,Y)服从区域D上的均匀分布,D={(x,y)︱0≤x≤2,0≤y≤2},令U=(X+Y)2,试求EU与DU。
求A的特征值.判断a,b取什么值时A相似于对角矩阵?
随机试题
“永州八记”写于柳宗元被贬为________时,其首篇是《________》。
以下观点何项是《诸病源候论》提出的
男性,30岁。患出血坏死性胰腺炎2周,经治疗,高热不退,持续腹痛。体检:上腹扪及一块物。血淀粉酶1000U/L(Somogyi法),血白细胞14×109/L,中性粒细胞0.85(85%)。最可能的原因是
病理切片中见到绒毛结构的疾病不是流产后不规则流血,子宫内容物组织学检查为成团的滋养细胞,未见绒毛结构,诊断为
目前,各银行还根据个人需求提供个性化的还款方式及还款服务,较为常见的特色还款方式包括()。
日用小杂品的配送在现实生活中,往往都是采用()方法来向用户供货和发送货物的。
Sociologists(社会学家)tellusthatweareheadingforasocietyleisure.Thetrendisunmistakable.Onehundredyearsago,theypo
A、 B、 C、 D、 C确认图片中有孩子们和一位女士在公交车旁排成一队,同时公交车里面的男士正在看着他们。
A、Newspaperoflowprice.B、Newspaperwithattractiveheadline.C、Newspaperwithsportspage.D、Newspaperwithbusinesssection.
A、Theinterpersonalrelationship.B、Thehighpressure.C、Theservantsystem.D、Therapidprogress.B原文提到美国人对时间又爱又十艮,后面具体解释原因,答案依
最新回复
(
0
)