首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量X服从正态分布N(μ,8),μ未知.现有X的10个观察值χ1,…,χ10,已知=1500. (Ⅰ)求μ的置信度为0.95的置信区间; (Ⅱ)要想使0.95的置信区间长度不超过l,观察值个数n最少应取多少? (Ⅲ)如果n=1
设随机变量X服从正态分布N(μ,8),μ未知.现有X的10个观察值χ1,…,χ10,已知=1500. (Ⅰ)求μ的置信度为0.95的置信区间; (Ⅱ)要想使0.95的置信区间长度不超过l,观察值个数n最少应取多少? (Ⅲ)如果n=1
admin
2018-06-12
74
问题
设随机变量X服从正态分布N(μ,8),μ未知.现有X的10个观察值χ
1
,…,χ
10
,已知
=1500.
(Ⅰ)求μ的置信度为0.95的置信区间;
(Ⅱ)要想使0.95的置信区间长度不超过l,观察值个数n最少应取多少?
(Ⅲ)如果n=100,那么区间(
)作为μ的置信区间时,置信度是多少?
选项
答案
(Ⅰ)正态总体的方差已知,求期望值μ的置信区间公式为 [*] 将σ=[*],n=10,[*]=1500,λ=1.96代入上式,得到 I=(1498,1502), 其中λ由等式P{U|<λ}=0.95(U~N(0,1))确定. (Ⅱ)根据(Ⅰ)中置信区间公式可知置信区间长度l=[*]λ,由于λ=1.96,σ=[*],l=1,依题意,应解不等式 [*]×1.96≤1, 得出n≥122.93.因此观察值个数n最少应取123. (Ⅲ)如果置信区间I=([*]),根据(Ⅰ)中置信区间公式,应有[*]λ=1.将σ=[*],n=100 代入上式,解出λ=3.54.其置信度为 1-α=P{|U|<3.54}=2Ф(3.54)-1=0.9996. 求置信度1-α的另一种解法是直接计算概率 [*] =2Ф(3.54)-1=0.9996.
解析
转载请注明原文地址:https://kaotiyun.com/show/ZGg4777K
0
考研数学一
相关试题推荐
设an=试证明:(Ⅰ)an+1<an且(Ⅱ)级数条件收敛.
设则三条直线a1χ+b1y+c1=0,a2χ+b2y+c2=0,a3χ+b3y+c3=0(其中ai2+bi2≠0,i=1,2,3)交于一点的充分必要条件是()
在某国,每年有比例为p的农村居民移居城镇,有比例为q的城镇居民移居农村.假设该国总人口数不变,且上述人口迁移的规律也不变.把n年后农村人口和城镇人口占总人口的比例依次记为χn和),yn(χn+yn=1).(1)求关系式中的矩阵A;(2)
设X1,X2,…,Xn是取自正态总体N(μ,σ2)的简单随机样本,其样本均值和方差分别为,S2,则服从自由度为n的χ2分布的随机变量是
在区间(-1,1)上任意投一质点,以X表示该质点的坐标.设该质点落在(-1,1)中任意小区间内的概率与这个小区间的长度成正比,则
设随机变量X的概率密度为f(χ)=记事件A={X≤1},对X进行4次独立观测,到第四次事件A刚好出现两次的概率就为q,则q=_______.
(Ⅰ)求累次积分J=(Ⅱ)设连续函数f(χ)满足f(χ)=1+∫χ1f(y)f(y-χ)dy,记I=∫01f(χ)dχ,求证:I=1+∫01f(y)dy∫0yf(y-χ)dχ,(Ⅲ)求出I的值.
某考生想借张宇编著的《张宇高等数学18讲》,决定到三个图书馆去借,对每一个图书馆而言,有无这本书的概率相等;若有,能否借到的概率也相等,假设这三个图书馆采购、出借图书相互独立,求该生能借到此书的概率.
独立地重复进行某项试验,直到成功为止,每次试验成功的概率为p.假设前5次试验每次的试验费用为10元,从第6次起每次的试验费用为5元.试求这项试验的总费用的期望值a.
设(X1,X2,…,Xn,Xn+1,…,Xn+m)为来自总体X~N(0,σ2)的简单样本,则统计量U=服从___________分布.
随机试题
《城市消防远程监控系统技术规范》(GB50440—2007)于2007年10月23日颁布,自2008年1月1日起实施。()
国际企业设计渠道模式时,应考虑的环境因素包括目标市场国的法律、分销模式、_______、_______。
对水不通透的肾小管是()。
与中、青年病人相比,老年外科病人在人体组成方面的改变包括()。
患者,女性,30岁。半个月前因上腹痛就诊,被诊断为:十二指肠伴幽门螺杆菌感染,已经口服法莫替丁半个月。进一步治疗建议中错误的是()
透皮吸收制剂中加入“Azone”的目的是
根据《民事诉讼法》及相关司法解释,再审过程中有下列哪些情形的,人民法院可以裁定终结审查?
库存现金如果存在“白条顶库"现象,应由接管人员会同会计机构负责人在规定期限内负责查清处理。()
梁式楼梯梯段的传力结构主要组成有( )。
甲和乙进行足球点球比赛,两人各射两次点球,进球数量多的人获胜。甲每次进球的概率为60%,乙每次进球的概率为30%。那么比赛中乙战胜甲的概率为:
最新回复
(
0
)