首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)设A,B为n阶矩阵,|λE-A|=|λE-B|且A,B都可相似对角化,证明:A~B. (2)设矩阵A,B是否相似?若A,B相似,求可逆矩阵P,使得P-1AP=B.
(1)设A,B为n阶矩阵,|λE-A|=|λE-B|且A,B都可相似对角化,证明:A~B. (2)设矩阵A,B是否相似?若A,B相似,求可逆矩阵P,使得P-1AP=B.
admin
2017-12-31
36
问题
(1)设A,B为n阶矩阵,|λE-A|=|λE-B|且A,B都可相似对角化,证明:A~B.
(2)设
矩阵A,B是否相似?若A,B相似,求可逆矩阵P,使得P
-1
AP=B.
选项
答案
(1)因为|λE-A|=|λE-B|,所以A,B有相同的特征值,设为λ
1
,λ
2
,…,λ
n
, 因为A,B可相似对角化,所以存在可逆矩阵P
1
,Pλ
2
,使得 [*] 由P
1
-1
AP
1
=P
2
-1
BP
2
得(P
1
P
2
)
-1
A(P
1
P
2
-1
)=B, 取P
1
P
2
-1
=B,则P
-1
AP=B,即A~B. (2)由|λE-A|=[*]=(λ-1)
2
(λ-2)=0得 A的特征值为λ
1
=2,λ
2
=λ
3
=1; 由|λE-B|=[*]=(λ-1)
2
(λ-2)=0得 B的特征值为λ
1
=2,λ
2
=λ
3
=1; 由E-A=[*]得r(E-A)=1,即A可相似对角化; 再由E-B=[*]得r(E-B)=1,即B可相似对角化, 故A~B. [*] 再令P=P
1
P
2
-1
=[*],则P
-1
AP=B.
解析
转载请注明原文地址:https://kaotiyun.com/show/ZJX4777K
0
考研数学三
相关试题推荐
设二次型f(x1,x2,x3)=XTAX=ax12+222一223+2bx1x3(b>0),其中二次型的矩阵A的特征值之和为1,特征值之积为一12.求a,b的值;
设有线性方程组证明:设α1=α3=k,α2=α4=k(k≠0),且已知β1=(-1,1,1)T,β2=(1,1,-1)T是该方程组的两个解,写出此方程组的通解。
设α1,α2,α3是4元非齐次线性方程组Ax=b的3个解向量,且A的秩r(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=6的通解X=
设A为3阶实对称矩阵,且满足条件A2+2A=0,A的秩r(A)=2.求A的全部特征值;
设λ1,λ2是n阶方阵A的两个不同特征值,x1,x2分别是属λ1,λ2的特征向量。证明:x1+x2不是A的特征向量。
设n维实向量α=(a1,a2,…,an)T≠0,方阵A=ααT(1)证明:对于正整数m,存在常数t,使Am=tm-1A,并求出t;(2)求可逆矩阵P-1使P-1AP成对角矩阵。
证明:二次型f(X)=XTAX在XTX=1条件下的最大(小)值等于实对称矩阵A的最大(小)特征值。求三元函数f(x1,x2,x3)=3x12+2x22+3x32+2x1x3在x12+x22+x32=1条件下的最大及最小值,并求最大值点及最小值点。
已知下列非齐次线性方程组(Ⅰ)(Ⅱ):求解方程组(Ⅰ),用其导出组的基础解系表示通解;
设平面区域D由曲线及直线y=0,x=1,x=e2所围成,二维随机变量(X,Y)在区域D上服从均匀分布,则(X,Y)关于X的边缘概率密度在x=2处的值为_____.
设周期函数f(x)在(一∞,+∞)内可导,周期为4,又则曲线y=f(x)在点(5,f(5))处的切线斜率为
随机试题
患者女性,48岁,反复低热并盗汗1个月。查体:双侧颈部锁骨上可及多发淋巴结,无压痛,双侧腋窝多发肿大淋巴结,饮酒后出现淋巴结疼痛。心肺检查(一)。血常规无异常。B超示腹膜后及双侧腹股沟区多发肿大淋巴结。PPD试验阴性,ESR45mm/L,肿瘤标志物C12
急性梗阻性化脓性胆管炎患者的检查不适用
患者.女性,60岁。输血15分钟后感觉头胀,四肢麻木,腰背部剧痛,脉细弱,血压下降。病区护士为患者立即采取针对性的护理措施,但应除外
常物性流体管内受迫流动,沿管长流体的平均温度,在常热流边界条件下呈()变化,在常壁温边界条件下呈()规律变化。
地下水按其成因与埋藏条件,可以分成上层滞水、潜水、承压水三类。具有城市用水意义的地下水,主要是( )。
担保是为了使债权人的债权得以实现,通过法定或者约定的方式,用特定人的( )或财产,保障债务人履行债务的法律制度。
预期将发生通货膨胀或提高利率时市盈率会普遍下降,预期公司利润增长时市盈率会上升,债务比重大的公司市盈率较低。()
①历史上严重的干旱和洪水给生命和财产带来了难以估计的损失②但却未能从根本上摆脱严重的干旱和洪水反复给经济社会带来的巨大灾难③几千年来,人类以巨大的努力不屈不挠地进行着筑堤防洪、截流蓄水、开渠引水、掘井取水等传统模式的水利建设,推动着文明
《明史》:“若亭疑献决,而囚有番异,则改调隔别街门问拟。二次番异不服,则具奏,会九卿鞠之,谓之圆审。至三四讯不服,而后请旨决焉。”结合以上材料,请回答下列问题:该制度反映的是哪种统治思想?
论述当代中国社会主义法治在社会治理中的作用。
最新回复
(
0
)