首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是秩为n一1的n阶矩阵,α1与α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是
设A是秩为n一1的n阶矩阵,α1与α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是
admin
2019-05-12
48
问题
设A是秩为n一1的n阶矩阵,α
1
与α
2
是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是
选项
A、α
1
+α
2
.
B、kα
1
.
C、k(α
1
+α
2
).
D、k(α
1
一α
2
).
答案
D
解析
因为通解中必有任意常数,显见(A)不正确.由n—r(A)=1知Ax=0的基础解系由一个非零向量构成.α
1
,α
1
+α
2
与α
1
一α
2
中哪一个一定是非零向量呢?
已知条件只是说α
1
,α
2
是两个不同的解,那么α
1
可以是零解,因而kα
1
可能不是通解.如果α
1
=-α
2
≠0,则α
1
,α
2
是两个不同的解,但α
1
+α
2
=0,即两个不同的解不能保证α
1
+α
2
≠0.因此要排除(B)、(C).由于α
1
≠α
2
,必有α
1
一α
2
≠0.可见(D)正确.
转载请注明原文地址:https://kaotiyun.com/show/b504777K
0
考研数学一
相关试题推荐
求∫01.
10件产品有3件次品,7件正品,每次从中任取一件,取后不放回,求下列事件的概率:不超过三次取到次品.
设α1,…,αm,β为m+1维向量,β=α1+…+αm(m>1).证明:若α1,…,αm线性无关,则β一α1,…,β一αm线性无关.
计算I=∫L(ex+1)cosydx一[(ex+x)siny—x]dy,其中L为由点A(2,0)沿心形线r=1+cosθ上侧到原点的有向曲线段.
某流水线上产品不合格的概率为p=,各产品合格与否相互独立,当检测到不合格产品时即停机检查,设从开始生产到停机检查生产的产品数为X,求E(X)及D(X).
在电炉上安装了4个温控器,其显示温度的误差是随机的,在使用过程中,只要有两个温控器显示的温度不低于临界温度t0,电炉就断电,以E表示事件“电炉断电”,而T(1)≤T(2)≤T(3)≤T(4)为4个温控器显示的按递增顺序排列的温度值,则时间E等于()
设n阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α1+2α2+…+(n一1)αn-1=0,b=α1+α2+…+αn.证明方程组AX=b有无穷多个解;
设钢管内径服从正态分布N(μ,σ2),规定内径在98到102之间的为合格品;超过102的为废品,不足98的是次品,已知该批产品的次品率为15.9%,内径超过101的产品在总产品中占2.28%,求整批产品的合格率.
设质点P沿以为直径的下半圆周,从点A(1,2)运动到B(3,4)的过程中,受变力F的作用,F的大小等于点P到原点O之距离,方向垂直于线段,与y轴正向的夹角小于π/2,求变力F对质点P做的功.
设随机变量X1,X2,…,Xn(n>1)独立同分布,且方差σ2>0,记Xi,则X1-的相关系数为
随机试题
糖尿病足形成与下列哪项相关
以下说法正确的是
下列叙述正确的是
按规定依法取得医师资格.但未经注册取得执业证书者
医疗机构保存住院病历的最低期限是()
按照《银行业监督管理法》的规定,对发生风险的银行业金融机构的处置方式中不包括()。
已知下列各种初始状态(长度为n)元素,试问当利用直接插入法进行排序时,至少需要进行多少次比较(要求排序后的文件按关键字从大到小顺序排列)?(1)关键字自小到大有序(key1<key2<…<keyn);(2)关键字自大到小逆序(key1>
ApiecebyCambridgephilosopherSimonBlackburninthecurrentissueoftheSocietyofAuthorsjournaladdressesthedifficult
Aresearchersaysleadintheenvironmentcouldbeamajor【D1】______byyoungpeople.DoctorHerbertNeedlemanisaprofessorat
A、Sheisexpectingherturn.B、Shehasfoundvaluableinformation.C、Sheneedsanotherweektoprepare.D、Shehasnotpreparedy
最新回复
(
0
)