首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
二次型f(x1,x2,x3)=5x12+5x22+cx32一2x1x2+6x1x3—6x2x3的秩为2。求参数c及此二次型对应矩阵的特征值。
二次型f(x1,x2,x3)=5x12+5x22+cx32一2x1x2+6x1x3—6x2x3的秩为2。求参数c及此二次型对应矩阵的特征值。
admin
2018-12-19
57
问题
二次型f(x
1
,x
2
,x
3
)=5x
1
2
+5x
2
2
+cx
3
2
一2x
1
x
2
+6x
1
x
3
—6x
2
x
3
的秩为2。求参数c及此二次型对应矩阵的特征值。
选项
答案
二次型对应的矩阵为 [*] 由二次型的秩为2,可得|A|=0,由此解得c=3,容易验证,此时A的秩为2。 又因 |λE—A|=[*]=λ(λ一4)(λ一9), 所以特征值为λ
1
=0,λ
2
=4,λ
3
=9。
解析
转载请注明原文地址:https://kaotiyun.com/show/bAj4777K
0
考研数学二
相关试题推荐
(2009年)设z=f(χ+y,χ-y,χy),其中,具有二阶连续偏导数,求dz与
(2006年)设函数f(u)在(0,+∞)内具有二阶导数,且z=f()满足等式(Ⅰ)验证f〞(u)+=;(Ⅱ)若f(1)=0,f′(1)=1,求函数f(u)的表达式.
(2011年)设向量组α1=(1,0,1)T,α2(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示.(Ⅰ)求a的值;(Ⅱ)将β1,β2,β3用α1,α2,
(2010年)设向量组Ⅰ:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βs线性表示.下列命题正确的是【】
(2000年)函数f(χ)在[0,+∞]上可导,f(0)=1,且满足等式f′(χ)+f(χ)-∫0χf(t)dt(1)求导数f′(χ);(2)证明:当χ≥0时,成立不等式:e-χ≤f(χ)≤1.
(2010年)设A=,正交矩阵Q使得QTAQ为对角矩阵.若Q的第1列为(1,2,1)T,求a,Q.
(2013年)设奇函数f(χ)在[-1,1]上具有2阶导数,且f(1)=1.证明:(Ⅰ)存在ξ∈(0,1),使得f′(ξ)=1;(Ⅱ)存在η∈(-1,1),使得f〞(η)+f′(η)=1.
(1993年)设二阶常系数线性微分方程y〞+αy′+βy=γeχ的一个特解为y=e2χ+(1+χ)eχ,试确定常数α、β、γ,并求该方程的通解.
用配方法化下列二次型为标准形:f(x1,x2,x3)=+2x1x2-2x1x3+2x2x3
实对阵矩阵A与矩阵合同,则二次型xTAx的规范形为__________。
随机试题
在论文的组成部分中,位于正文之后、读者最关心的文章精髓部分是()。
妊娠合并巨细胞病毒感染下列哪项是不恰当的
在人本主义(询者中心)治疗中最重要的是
案例1.项目概况2015年10月8日,A公司与建工B公司签订《建设工程施工合同》,明确某商用建筑土建施工由建工B公司承包,建筑面积为11.5×104m2。2016年9月25日项目主体结构封顶。项目施工现场塔式起重机2台,施工升降机2台,
背景某高科技集团在上海浦东投资兴建总部办公大楼,为了加快建设进度、尽快投入使用,业主采用平行承发包模式,将土建工程、装饰装修工程分别与两家不同的工程公司AB分别签署了相应的土建施工合同、装饰装修施工合同。施工过程中发生如下事件:事件一:
下列关于期货合约最小变动价位的说法,不正确的是()。
旅行社违反《责任保险规定》有关规定,拒不接受旅游行政管理部门的管理和监督检查的,由旅游行政管理部门限期改正,给予警告,逾期不改正的,可以处罚款()。
对教师而言,课程资源指的就是教学大纲和教科书。()
设f(u)为可微函数,且f(0)=0,则
数据库应用系统中的核心问题是( )。
最新回复
(
0
)