首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.
设矩阵的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.
admin
2016-01-11
50
问题
设矩阵
的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.
选项
答案
矩阵A的特征多项式为[*] 若λ=2是特征方程的二重根,则有2
2
一16+18+3a=0,解得a=一2. 当a=一2时,A的特征值为2,2,6,矩阵[*] 的秩为1,故λ=2对应的线性无关的特征向量有两个,从而A可相似对角化.若λ=2不是特征方程的二重根,则λ
2
一8λ+18+3a为完全平方数,从而18+3a=16,解得[*].当[*]时,A的特征值为2,4,4,矩阵 [*] 的秩为2,故λ=4对应的线性无关的特征向量只有一个,从而A不可相似对角化.
解析
本题主要考查矩阵特征值、特征向量的求法及矩阵相似于一个对角矩阵的充分必要条件.通过讨论矩阵特征方程二重根的情况以及对应的线性无关的特征向量的个数,从而决定矩阵A是否可以相似于对角矩阵.
转载请注明原文地址:https://kaotiyun.com/show/ce34777K
0
考研数学二
相关试题推荐
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关.(Ⅰ)证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表示;(Ⅱ)设,求出可由两组向量同时表示的向量.
设A=(β-α1-2α2-3α3,α1,α2,α3),α1,α2,α3,β均是3维列向量,则方程组Ax=β有特解为________.
设随机变量X的慨率密度为f(x),EX存在,若对常数a,有f(a+x)=f(a-x),则EX=()
设A=E-ααT,α为3维非零列向量.(I)求A-1,并证明:α与Aα线性相关;(Ⅱ)若α=(α,α,α)T(a≠0),求正交矩阵Q,使得QTAQ=A;(Ⅲ)在(Ⅱ)的基础上,A与A2是否合同?说明理由.
设A=,则与A既相似又合同的矩阵为()
设P{X=0)=1/4,P{X=1}=3/4,P{Y=-1/2}=1,3维向量组α1,α2,α3线性无关,则α1+α2,α2+2α3,Xα3+Yα1线性相关的概率为()
设n维实列向量α满足αTα=2,A,B,E均为n阶矩阵,且A(E-2ααT)=B,则()
设矩阵满足CTAC=B.对上题中的A,求可逆矩阵P,使得PTBP=A.
设3阶实对称矩阵A=(a1,a2,a3)有二重特征值λ1=λ2=2,且满足a1-2a3=(-3,0,6)T.k为何值时,A*+kE是正定矩阵?
随机试题
导致弥散性血管内凝血患者出血的主要原因是
有机磷农药中毒时,出现烟碱样症状的表现是()。
A.心脏毒性B.出血性膀胱炎C.肝损伤D.肺纤维化E.腹泻米托蒽醌可引起的主要不良反应()。
建设工程项目进度控制的管理措施涉及( )。
某汽车企业2004年第一季度汽车完成周转量200万吨公里,挂车完成周转量80万吨公里,拖运率为()。[2005年真题]
紧张、焦虑、恐惧等消极情绪出现,对身心健康都是有害无益的,应该尽量压抑这类情绪。()
商洽性文件的主要文种是()
Whereistheman?
Wherehavethefamilydecidedtogoforavacationthissummer?
如果你是一个中等水平的读者,你能够以每分钟300字的速度阅读一本中等水平的书。不过,你必须每天这样坚持下去,否则就无法保持这种水平。【T1】你也不可能以这个速度阅读科学、数学、农业、商业方面的书,或是对你来说内容生疏的书。(Nor…or…)你绝不会以这种速
最新回复
(
0
)