首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.
设矩阵的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.
admin
2016-01-11
37
问题
设矩阵
的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.
选项
答案
矩阵A的特征多项式为[*] 若λ=2是特征方程的二重根,则有2
2
一16+18+3a=0,解得a=一2. 当a=一2时,A的特征值为2,2,6,矩阵[*] 的秩为1,故λ=2对应的线性无关的特征向量有两个,从而A可相似对角化.若λ=2不是特征方程的二重根,则λ
2
一8λ+18+3a为完全平方数,从而18+3a=16,解得[*].当[*]时,A的特征值为2,4,4,矩阵 [*] 的秩为2,故λ=4对应的线性无关的特征向量只有一个,从而A不可相似对角化.
解析
本题主要考查矩阵特征值、特征向量的求法及矩阵相似于一个对角矩阵的充分必要条件.通过讨论矩阵特征方程二重根的情况以及对应的线性无关的特征向量的个数,从而决定矩阵A是否可以相似于对角矩阵.
转载请注明原文地址:https://kaotiyun.com/show/ce34777K
0
考研数学二
相关试题推荐
微分方程(x+y)dy+(y+1)dx=0满足y(1)=2的特解是y=___________.
设A,B,C是n阶矩阵,并满足ABAC=E,则下列结论中不正确的是
设3阶实对称矩阵A满足A2=2A,已知二次型f(x1,x2,x3)=xTAx经正交变换x=Qy化为λy22+λy32(λ≠0),其中Q=(b>0,c>0).求矩阵A;
设在点处,函数f(x,y)=x2+(y-1)2(x≠0)在条件=1(a>0,b>0)下取得最小值,求a,b的值.
设α=(1,a,1)T(a>0)是A-1的特征向量,其中A=,则a=________.
设幂级数an(x+1)n在x=4处条件收敛,在x=-6处发散,则幂级数的收敛域为________.
设矩阵满足CTAC=B.对上题中的A,求可逆矩阵P,使得PTBP=A.
设矩阵满足CTAC=B.求正交矩阵Q,使得Q-1AQ=A;
设3阶实对称矩阵A=(a1,a2,a3)有二重特征值λ1=λ2=2,且满足a1-2a3=(-3,0,6)T.k为何值时,A*+kE是正定矩阵?
随机试题
承受轴向力,载荷方向与轴中心线平衡的轴承称为()轴承。
A.小脑桥脑角综合征B.Wallenberg综合征C.Parinaud综合征D.Benedikt综合征E.Weber综合征
输血的适应证不包括
()具有独立的设计文件,竣工后可以独立发挥生产能力或效益。
关于期货交易所下列说法正确的是()。
流动性资产包括()。
实数a,b,c成等比数列.(1)关于χ的一元二次方程aχ2-2bχ+c=0有两相等实根;(2)lga,lgb,lgc成等差数列。
十进制数60转换成二进制整数是()。
minutes
【B1】______【B7】______
最新回复
(
0
)