首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)为[0,1]上单调减少的连续函数,且f(x)>0,试证:存在唯一的点ξ∈(0,1),使得 ∫0ξf(x)dx=(1一ξ)f(ξ).
设f(x)为[0,1]上单调减少的连续函数,且f(x)>0,试证:存在唯一的点ξ∈(0,1),使得 ∫0ξf(x)dx=(1一ξ)f(ξ).
admin
2017-07-26
91
问题
设f(x)为[0,1]上单调减少的连续函数,且f(x)>0,试证:存在唯一的点ξ∈(0,1),使得
∫
0
ξ
f(x)dx=(1一ξ)f(ξ).
选项
答案
变量可分离的微分方程得F(x)=[*],即(1一x)F(x)=c. 作辅助函数φ(x)=(1一x)F(x),用洛尔定理证明. 证 令 φ(x)=(1一x)F(x)=∫
0
x
f(t)dt—x∫
0
x
f(t)dt, 则φ(x)在[0,1]上连续,在(0,1)内可导,且φ(0)=φ(1)=0. 由洛尔定理,存在点ξ∈(0,1),使得φ’(ξ)=0,即 f(ξ)一∫
0
ξ
f(t)dt一ξf(ξ)=0, 故有∫
0
ξ
f(t)dt=(1一ξ)f(ξ). 用反证法证明唯一性. 假若在(0,1)内存在点ξ
1
、ξ
2
,不妨设ξ
1
<ξ
2
,使得 [*] =(1一ξ
2
)[f(ξ
2
)一f(ξ
1
)]一(ξ
2
一ξ
1
)f(ξ
1
). 由已知条件可知,上式的左边大于零,而右边小于零矛盾,故点ξ是唯一的.
解析
记F(x)=∫
0
x
f(t)dt,欲证存在点ξ,使得F(ξ)=(1—ξ)F’(ξ)
F(x)=(1一x)F’(x).
转载请注明原文地址:https://kaotiyun.com/show/cuH4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 D
已知实二次型f(x1,x2,x3)=a(x11+x22+x32)+4x1x2+4x1x3+4x2x3经正交变换x=Py可化成标准形f=6y12,则a=_______.
设A为n阶矩阵,对于齐次线性方程(I)An=0和(Ⅱ)An+1x=0,则必有
设A是n阶反对称矩阵,证明:A可逆的必要条件是n为偶数;当n为奇数时,A*是对称矩阵;
设向量组a1,a2,a3线性相关,向量组a2,a3,a4线性无关,问:(Ⅰ)a1能否由a2,a3,线性表出?证明你的结论.(Ⅱ)a4能否由a1,a2,a3铴线性表出?证明你的结论.
某企业生产某种商品的成本函数为C=a+aQ+cQ2,收入函数为R=lQ一sQ2,其中常数a,b,c,l,s都是正常数,Q为产量,求:当企业利润最大时,t为何值时征税收益最大.
设g(x)二阶可导,且f(x)=求常数a使得f(x)在x=0处连续;
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明:(1)存在ξ∈(a,b),使得f’(ξ)=2ξf(ξ).(2)存在η∈(a,b),使得nf’(η)+f(η)=0.
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)f(b)>0,f(a)f()<0.证明:存在ξ∈(a,b),使得f’(ξ)=f(ξ).
将f(x)=arctanx展开成x的幂级数.
随机试题
关于方差分析以下错误的一项为
法的制定的程序即立法程序,是指()。
建设工程项目施工质量保证体系的主要内容有()。
中央预算的调整方案必须提请()审查和批准。
小唐在学期末复习数学的时候,会把这个学期所学的所有数学知识点写成提纲,从而帮助自己复习。这属于学习策略中的()。
以下是对中国文化艺术的文言别称,属于美术的是()。
下列句子中没有语病的一项是()。
第十二届全国人民代表大会第三次会议政府工作报告中看点众多,精彩纷呈。为了更好地宣传大会精神,新闻编辑小王需制作一个演示文稿,素材放于考生文件夹下的“文本素材.docx”及相关图片文件,具体要求如下:第1张幻灯片为标题幻灯片,标题为“图解今年年施政要
A、Talkingonthetelephone.B、Vacuumingthebathroom.C、Rollingtherocks.D、Listeningtomusic.D语义理解题。女士说可以理解欣赏摇滚乐时需要把音量调高,可是你
IntheUnitedStatesthescienceofclimatechangestillremainsacontroversialissue.Partoftheproblemsisthatitiscompl
最新回复
(
0
)