首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
n阶实对称矩阵A正定的充分必要条件是( ).
n阶实对称矩阵A正定的充分必要条件是( ).
admin
2019-08-28
23
问题
n阶实对称矩阵A正定的充分必要条件是( ).
选项
A、A无负特征值
B、A是满秩矩阵
C、A的每个特征值都是单值
D、A
-1
是正定矩阵
答案
D
解析
A正定的充分必要条件是A的特征值都是正数,A不对;
若A为正定矩阵,则A一定是满秩矩阵,但A是满秩矩阵只能保证A的特征值都是非零常数,不能保证都是正数,B不对;
C既不是充分条件又不是必要条件;
显然D既是充分条件又是必要条件.
转载请注明原文地址:https://kaotiyun.com/show/cvJ4777K
0
考研数学三
相关试题推荐
一辆汽车沿一街道行驶,要过三个均设有红绿信号灯的路口,每个信号灯为红或绿与其他信号灯为红或绿相互独立,且红、绿两种信号显示的时间相等.以X表示该汽车首次遇到红灯前已通过的路口的个数,求X的概率分布.
(2004年)设f(x),g(x)在[a,b]上连续,且满足∫axf(t)dt≥∫axg(t)dt,x∈[a,b];∫abf(t)dt=∫abg(t)dx证明:∫abxf(x)dx≤∫abxg(x)dx
(2007年)设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,又f(a)=g(a),f(b)=g(b),证明:Ⅰ)存在η∈(a,b),使得f(η)=g(η);Ⅱ)存在ξ∈(a,b),使得f’’(ξ)
(2018年)设数列{xn}满足:x1>0,xnexn+1=exn一1(n=1,2,…).证明{xn}收敛,并求.
(2017年)设a0=1,a1=0,的和函数.(Ⅰ)证明幂级数的收敛半径不小于1;(Ⅱ)证明(1一x)S’(x)-xS(x)=0(x∈(一1,1)),并求S(x)的表达式.
设n元线性方程组Ax=b,其中当a为何值时,该方程组有唯一的解,并在此时求x1;
设矩阵Am×n的秩为r(A)=m<n,Im为m阶单位矩阵,则下述结论中正确的是()
设n阶矩阵A非奇异(n≥2),A*是矩阵A的伴随矩阵,则()
设二次型f(x1,x2,x3)=XTAX=ax12+2x22-2x32+2bx1x3(b>0),其中二次型的矩阵A的特征值之和为1,特征值之积为-12.(1)求a,b的值;(2)利用正交变换将二次型,化为标准形,并写出所用的正交变换和对应的正交矩阵.
随机试题
在超市购物时,收银员用条码扫描仪“扫”一下商品后,电脑上就会显示出价格,“扫”商品的过程属于()。
对无症状心力衰竭的治疗,除预防呼吸道感染,避免体力劳动外,以下哪种药物可延缓心功能恶化和心力衰竭的发展
处理生理性黄疸最常用的方法是
根据公司法的规定,可以发行公司债券的主体有()。
下列各项中,与企业储备存货有关的成本有()。
领队是旅游团的领导者,导游员是旅游团的实际领导者。()
设某棵树的度为3,其中度为3、1、0的结点个数分别为3、4、15。则该树中总结点数为
Whoneedsapublisher?BobYoung,CEOofprint-on-demandserviceLulu.com,saysthatthepublishingand【1】ofbooksonlinewilln
_____himtoyourbirthdaypartythisweekend?
Whydoesthewritermention"athief"inthefirstparagraph?______Bysaying"Nowexiststhepossibilityofterrorismbycomp
最新回复
(
0
)