首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B为三阶矩阵,且AB=A-B,若λ1,λ2,λ3为A的三个不同的特征值,证明: 存在可逆矩阵P,使得P-1AP,P-1BP同时为对角矩阵.
设A,B为三阶矩阵,且AB=A-B,若λ1,λ2,λ3为A的三个不同的特征值,证明: 存在可逆矩阵P,使得P-1AP,P-1BP同时为对角矩阵.
admin
2018-05-25
34
问题
设A,B为三阶矩阵,且AB=A-B,若λ
1
,λ
2
,λ
3
为A的三个不同的特征值,证明:
存在可逆矩阵P,使得P
-1
AP,P
-1
BP同时为对角矩阵.
选项
答案
因为A有三个不同的特征值λ
1
,λ
2
,λ
3
所以A可以对角化,设A的三个线性无关的特征向量为ξ
1
,ξ
2
,ξ
3
,则有A(ξ
1
,ξ
2
,ξ
3
)=(ξ
1
,ξ
2
,ξ
3
)diag(λ
1
,λ
2
,λ
3
),BA(ξ
1
,ξ
2
,ξ
3
)=B(ξ
1
,ξ
2
,ξ
3
)diag(λ
1
,λ
2
,λ
3
),AB(ξ
1
,ξ
2
,ξ
3
)=B(ξ
1
,ξ
2
,ξ
3
)diag(λ
1
,λ
2
,λ
3
),于是有ABξ
i
=λ
i
Bξ
i
,i=1,2,3. 若Bξ
i
≠0,则Bξ
i
是A的属于特征值λ
i
的特征向量,又λ
i
为单根,所以有Bξ
i
=μ
i
ξ
i
;若Bξ
i
=0,则ξ
i
是B的属于特征值0的特征向量.无论哪种情况.B都可以对角化,而且ξ
i
是B的特征向量,因此,令P=(ξ
1
,ξ
2
,ξ
3
),则P
-1
AP,P
-1
BP同为对角阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/dOX4777K
0
考研数学三
相关试题推荐
当x→-1时,若有+1~A(x+1)k,则A=________,k=_________.
已知y1=xex+e2x和y2=xex+e-x是二阶常系数非齐次线性微分方程的两个解,则此方程为()
已知α1,α2,…,αs线性无关,β可由α1,α2,…,αs线性表出,且表示式的系数全不为零.证明:α1,α2,αs,β中任意s个向量线性无关.
已知方程组是同解方程组,试确定参数a,b,c.
已知方程组(Ⅰ)及方程组(Ⅱ)的通解为k1[-1,1,1,0]T+k2[2,-1,0,1]T+[-2,-3,0,0]T.求方程组(Ⅰ),(Ⅱ)的公共解.
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3,如果β=α1+α2+α3+α4,求线性方程组AX=β的通解.
设A是m×s矩阵,B是s×n矩阵,则齐次线性方程组BX=0和ABX=0是同解方程组的一个充分条件是()
已知A是m×n矩阵,其m个行向量是齐次线性方程组Cx=0的基础解系,B是m阶可逆矩阵,证明BA的行向量也是齐次方程组Cx=0的基础解系.
设且f(0)=0,求函数f(x)和f(lnx).
设且α,β,γ两两正交,则a=______,b=______.
随机试题
无尿是指
A.羌活B.防风C.薄荷D.蝉蜕既能散外风,又能息内风的药物是
单侧肾动脉狭窄致慢性肾衰高血压呈高肾素患者,降压治疗不宜应用
患者,男性,25岁,中耳炎,医嘱青霉素过敏试验。过敏试验液的注入皮下剂量为
用于皮肤消毒的洗必泰液浓度为
作废的原始凭证在加盖“作废”戳记后可立即销毁。()
马柯威茨分别用期望收益率和收益率的方差来衡量投资的预期收益水平和不确定性(风险),建立均值方差模型来阐述如何全盘考虑上述两个目标,从而进行决策。()
下列各项中能引起诉讼时效中断的是()。
根据以下资料。回答81—85题。2007年,全国研究与试验发展(R&D)经费总支出为3710.2亿元,增长23.5%,研究与试验发展(R&D)经费投入强度(与国内生产总值之比)为1.49%。按研究与试验发展人员(全时工作量)计算的人均经费支出为21
Fromwhattimewillthetunnelbeclosed?
最新回复
(
0
)