首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
n维向量组a1,a2…,as(3≤s≤n)线性无关的充要条件是 ( )
n维向量组a1,a2…,as(3≤s≤n)线性无关的充要条件是 ( )
admin
2015-08-17
69
问题
n维向量组a
1
,a
2
…,a
s
(3≤s≤n)线性无关的充要条件是 ( )
选项
A、存在一组全为零的数k
a
,k
2
,…,k
s
,使k
1
a
1
+k
2
a
2
+…+k
s
a
s
=0
B、a
1
,a
2
…,a
s
中任意两个向量都线性无关
C、a
1
,a
2
…,a
s
中任意一个向量都不能由其余向量线性表出
D、存在一组不全为零的数k
a
,k
2
,…,k
s
,使k
1
a
1
+k
2
a
2
+…+k
s
a
s
=0
答案
C
解析
可用反证法证明之.必要性:假设有一向量,如α
s
可由α
1
,α
2
……α
s-1
线性表出,则α
1
,α
2
……α
s
线性相关,这和已知矛盾,故任一向量均不能由其余向量线性表出,充分性:假设α
1
,α
2
……α
s
线性相关
至少存在一个向量可由其余向量线性表出,这和已知矛盾,故α
1
,α
2
……α
s
线性无关.A对任何向量组都有0α
1
+0α
2
+…+0α
s
=0的结论.B必要但不充分,如α
1
=[0,1,0]
T
,α
2
=[1,1,0]
T
,α
3
=[1,0,0]
T
任两个线性无关,但α
1
,α
2
,α
3
线性相关.D必要但不充分.如上例α
1
+α
2
+α
3
≠0,但α
1
,α
2
,α
3
线性相关.
转载请注明原文地址:https://kaotiyun.com/show/e1w4777K
0
考研数学一
相关试题推荐
设二阶常系数齐次线性微分方程以y1=e2x,y2=2e-x-3e2x为特解,求该微分方程.
已知3阶矩阵A=有一个二重特征值,求a,并讨论A是否相似于对角矩阵.
4阶矩阵A,B满足ABA-1=BA-1+3E,已知
证明:若一个向量组中有一个部分向量组线性相关,则该向量组一定线性相关.
设A,B,C为常数,B2一AC>0,A≠0.u(x,y)具有二阶连续偏导数,试证明:必存在非奇异线性变换ξ=λ1x+y,η=λ2x+y(λ1,λ2为常数),将方程=0.
设向量组α1,α2,…,αs(s≥2)线性无关,且β1=α1+α2,β2=α2+α3,…,βs-1=αs-1+αs,βs=αs+α1,讨论向量组β1,β2,βs的线性相关性.
已知三阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵(k为常数),且AB=O,求线性方程组Ax=0的通解。
设α1,α2,…,αn为n个n维线性无关的向量,A是n阶矩阵.证明:Aα1,Aα2,…,Aαn线性无关的充分必要条件是A可逆.
随机试题
在火场上采用哪种灭火方法应如何决定?
简述《党政领导干部选拔任用工作条例》中规定的领导干部的基本素质要求。
病人因哮喘急性发作,经注射解除支气管痉挛药后效果不佳,此时应首要注意
慢性胃溃疡底部瘢痕组织中的小动脉内膜炎,常可导致
久用可诱发胆结石的药物是对动脉内皮有保护作用的药物是
背景材料:某机电安装公司,按照工程承包合同要求,完成了中南电机厂重型发电机总装车间的机电安装工程承包范围内的全部工程量,并对工程质量进行了自检,自检结果符合施工图纸和验收规范的要求。该机电安装公司向建设单位提交了竣工验收报告,请求组织竣工验收。建设单位组
物流战略方案,按具体竞争方式划分,包括低成本战略、高服务战略、()等。
设随机变量X的概率密度为f(x),已知D(X)=1,而随机变量Y的概率密度为f(-y),且ρXY=.记Z=X+Y,求E(Z),D(Z).
ComputerprogrammerBrendanTammyearned£55000ayearbydesigningnewcomputergames,yethecannotfindabankpreparedto
Althoughrecentyearshaveseensubstantialreductionsinnoxiouspollutantsfromindividualmotorvehicles,thenumberofsuch
最新回复
(
0
)