首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B是满足AB=O的任意两个非零矩阵,则必有( ).
设A,B是满足AB=O的任意两个非零矩阵,则必有( ).
admin
2019-09-27
38
问题
设A,B是满足AB=O的任意两个非零矩阵,则必有( ).
选项
A、A的列向量组线性相关,B的行向量组线性相关
B、A的列向量组线性相关,B的列向量组线性相关
C、A的行向量组线性相关,B的行向量组线性相关
D、A的行向量组线性相关,B的列向量组线性相关
答案
A
解析
设A,B分别为m×n及n×s矩阵,因为AB=O,所以r(A)+r(B)≤n,因为A,B为非零矩阵,所以r(A)≥1,r(B)≥1,从而r(A)<n,r(B)<n,故A的列向量组线性相关,B的行向量组线性相关,选A.
转载请注明原文地址:https://kaotiyun.com/show/e2S4777K
0
考研数学一
相关试题推荐
积分()
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中,(1)A2。(2)P-1AP。(3)AT。(4)E-A。α肯定是其特征向量的矩阵共有()
设α1,α2为齐次线性方程组AX=0的基础解系,β1,β2为非齐次线性方程组AX=b的两个不同解,则方程组Ab的通解为().
设矩阵是满秩的,则直线
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)﹦f(b)﹦2。证明存在ξ,η∈(a,b),使得f(η)﹢f’)﹦2eξ-η。
设X1,X2,…,XN和Y1,Y2,…,YN是分别取自总体均为正态分布N(μ,σ2)的两个相互独立的简单随机样本,记它们的样本方差分别为S12和S22,则统计量T﹦(S12﹢S22)的方差D(T)﹦()
设,方程组AX=β有解但不唯一.求正交阵Q,使得QTAQ为对角阵.
设(I),α1,α2,α3,α4为四元非齐次线性方程组BX=b的四个解,其中α1=.(Ⅰ)与(Ⅱ)是否有公共的非零解?若有公共解求出其公共解.
设函数y=f(x)存在二阶导数,且f'(x)≠0.(Ⅰ)请用y=f(x)的反函数的一阶导数、二阶导数表示及;(Ⅱ)求满足微分方程(*)的x与y所表示的关系式的曲线,它经过点(1,0),且在此点处的切线斜率为1/2,在此曲线上任意点处的
已知函数y(x)可微(x>0)且满足方程(x>0),则y(x)=______.
随机试题
Soccerisplayedbymillionsofpeopleallovertheworld,buttherehaveonlybeenafewplayerswhoweretrulygreat.Howdid
9.乙脑发患者群主要为()
商业银行主动发起,为规避自有资产、负债的信用风险、市场风险或流动性风险而进行的衍生产品交易是()。
某公司2011年4月以3800万元购得一写字楼作为办公用房使用,该写字楼原值9000万元,累计折旧4000万元。该地适用的契税税率为5%,该公司应缴纳的契税为()万元。
C国亚威集团是一家国际化矿业公司,其前身是主营五金矿产进出口业务的贸易公司。2004年7月,亚威集团在“从贸易型企业向资源型企业转型”的战略目标指引下,对北美N矿业公司发起近60亿美元的收购。当时国际有色金属业正处于低潮,收购时机较好。2005年5月,虽然
Inalisteningactivity,studentsareaskedtonotedownthetimeandplacesofevents.Theaimofthisactivityistodevelopt
已经定义ch为字符型变量,以下赋值表达式中错误的是______。
在一个小镇上,有一家格调高雅的餐厅。店主人察觉到每星期二的生意总是格外冷清,门可罗雀。一个星期二的傍晚,店主人闲来无事,随便翻阅了当地的电话簿,他发现当地竞有一个叫约翰-韦恩的人,与美国当时的一位名人同名同姓。这个偶然的发现,使他计上心来。他当即
A、 B、 C、 A
Cashisunlikelytogoawaysoon.Coinsandpaper【C1】________remainthemostpopularwaystopayforthingsinmostcountries.B
最新回复
(
0
)