首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3均为3维向量,则对任意常数k,l,向量组α1+kα3,α2+lα3线性无关是向量组α1,α2,α3线性无关的( )
设α1,α2,α3均为3维向量,则对任意常数k,l,向量组α1+kα3,α2+lα3线性无关是向量组α1,α2,α3线性无关的( )
admin
2018-07-26
38
问题
设α
1
,α
2
,α
3
均为3维向量,则对任意常数k,l,向量组α
1
+kα
3
,α
2
+lα
3
线性无关是向量组α
1
,α
2
,α
3
线性无关的( )
选项
A、必要非充分条件
B、充分非必要条件
C、充分必要条件
D、既非充分也非必要条件
答案
A
解析
1 记向量组(Ⅰ):α
1
+kα
3
,α
2
+lα
3
;
向量组(Ⅱ):α
1
,α
2
,α
3
.
(Ⅰ)是由(Ⅱ)线性表出的,写成矩阵形式即是:
[α
1
+kα
3
,α
2
+lα
3
]=[α
1
,α
2
,α
3
]
当(Ⅱ)线性无关时,矩阵[α
1
,α
2
,α
3
]为列满秩的,由于用列满秩阵左乘矩阵后,矩阵的秩不变,而矩阵
的秩为2,所以此时上式等号左边矩阵的秩也为2,也就是该矩阵的列秩为2,从而知向量组(Ⅰ)线性无关,所以,(Ⅰ)线性无关是(Ⅱ)线性无关的必要条件.
但(Ⅰ)线性无关不是(Ⅱ)线性无关的充分条件,例如当k=l=0时,(Ⅰ)线性无关即向量组α
1
,α
2
线性无关,却不能保证(Ⅱ)线性无关.
2 设有常数x
1
,x
2
,使得
x
1
(α
1
+kα
3
)+x
2
(α
2
+lα
3
)=0
即x
1
α
1
+x
2
α
2
+(x
1
k+x
2
l)α
3
=0,
若(Ⅱ)线性无关,则x
1
=x
2
=x
1
k+x
2
l=0,故由定义知(Ⅰ)线性无关.但若(Ⅰ)线性无关,(Ⅱ)却未必线性无关,例如α
1
=(1,0,0)
T
,α
2
=(0,1,0)
T
,α
3
=0,则(Ⅰ)线性无关,但(Ⅱ)却线性相关.因此,(Ⅰ)线性无关是(Ⅱ)线性无关的必要非充分条件.
转载请注明原文地址:https://kaotiyun.com/show/fHW4777K
0
考研数学三
相关试题推荐
某工厂生产甲、乙两种产品,当这两种产品的产量分别为x和y(单位:吨)时的总收益函数为R(x,y)=42x+27y-4x2-2xy-2,总成本函数为C(x,y)=36+8x+12y(单位:万元).除此之外,生产甲、乙两种产品每吨还需分别支付排污费2万元,1万
设A,B均是n阶矩阵,下列命题中正确的是
证明n维列向量α1,α2,…,αn线性无关的充要条件是
已知线性方程组的通解是(2,1,0,3)T+k(1,-1,2,0)T,如令αi=(ai,bi,ci,di)T,i=1,2,…,5.试问:(Ⅰ)α1能否由α2,α3,α4线性表出?(Ⅱ)α4能否由α1,α2,α3线性表出?并说明理由.
证明:与基础解系等价的线性无关的向量组也是基础解系.
设F(x)=,试求:(Ⅰ)F(x)的极值;(Ⅱ)曲线y=F(x)的拐点的横坐标;(Ⅲ)
设A是3阶矩阵,且各行元素之和都是5,则A必有特征向量_______.
设A是n阶可逆矩阵,且A与A-1的元素都是整数,证明:|A|=±1.
随机试题
“桑之未落,其叶沃若。于嗟鸠兮,无食桑葚!于嗟女兮,无与士耽!”这运用了诗经中________的修辞手法。
在妊娠后期,子宫各部的增长速度不一致。以适应临产后子宫收缩自子宫体向下递减,促进胎儿娩出,其中增长最快的是
药物组成中含有白术、茯苓的方剂是()
财会部门财产物资明细账余额与保管部门财产物资明细账的核对属于()。
和平发展就意味着不是通过战争手段强大起来。但是,和平并不意味着不用军事手段。如果在和平发展的过程中没有军事手段来支撑,和平发展也就无从谈起,发展也就不会在和平中进行。如何利用军事手段促进与其他国家的合作,是中国和平发展过程中一个十分重要的问题,我们也应该利
法对个体行为的指引有个别指引和规范性指引。规范性指引相对于个别指引的缺陷是()。
执行下面的程序段,s的值为【】。s=0:k=10Whileks=s+10k=k-2Wend
线性表常采用的两种存储结构是()。
TheweatherisaconstantsubjectofconversationinBritain.
Itwasthedistrictsportsmeet.Myfootstillhadn’thealed(痊愈)froma(n)【36】injury.Ihad【37】whetherornotIshouldattendthe
最新回复
(
0
)