首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是秩为3的5×4矩阵,α1,α2,α3是非齐次线性方程组Ax=b的三个不同的解,如果α1+α2+2α3=(2,0,0,0)T,3α1+α2=(2,4,6,8)T,则方程组Ax=b的通解是________。
设A是秩为3的5×4矩阵,α1,α2,α3是非齐次线性方程组Ax=b的三个不同的解,如果α1+α2+2α3=(2,0,0,0)T,3α1+α2=(2,4,6,8)T,则方程组Ax=b的通解是________。
admin
2019-03-13
119
问题
设A是秩为3的5×4矩阵,α
1
,α
2
,α
3
是非齐次线性方程组Ax=b的三个不同的解,如果α
1
+α
2
+2α
3
=(2,0,0,0)
T
,3α
1
+α
2
=(2,4,6,8)
T
,则方程组Ax=b的通解是________。
选项
答案
([*],0,0,0)
T
+k(0,2,3,4)
T
,k为任意常数
解析
由于r(A)=3,所以齐次方程组Ax=0的基础解系只含有4—r(A)=1个解向量。又因为
(α
1
+α
2
+2α
3
)一(3α
1
+α
2
)=2(α
3
—α
1
)=(0,—4,—6,—8)
T
是Ax=0的解,所以其基础解系为(0,2,3,4)
T
,由
A(α
1
+α
2
+2α
3
)=Aα
1
+Aα
2
+2Aα
3
=4b,
可知
,0,0,0)
T
+ k(0,2,3,4)
T
,k为任意常数。
转载请注明原文地址:https://kaotiyun.com/show/fcP4777K
0
考研数学三
相关试题推荐
[*]交换积分次序得
设三阶矩阵A的特征值为-1,-1,3,其对应的线性无关的特征向量为α1,α2,α3,令P=(2α1+α2,α1-α2,2α3),则P-1A*P=().
(Ⅰ)验证函数y(x)=(一∞<x<+∞)满足微分方程y"+y’+y=ex;(Ⅱ)求幂级数y(x)=的和函数。
设A为n阶非零矩阵,E为n阶单位矩阵。若A3=O,则()
设D={(x,y)|(x—1)2+(y—1)2=2},计算二重积分(x+y)dσ。
已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是对应的齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b的通解是()
设k>0,讨论常数k的取值,使f(x)=xlnx+k在其定义域内没有零点、有一个零点及两个零点。
有三个盒子,第一个盒子有4个红球1个黑球,第二个盒子有3个红球2个黑球,第三个盒子有2个红球3个黑球,如果任取一个盒子,从中任取3个球,以X表示红球个数.(1)写出X的分布律;(2)求所取到的红球数不少于2个的概率.
设函数f(x)在x=1的某邻域内有定义,且满足|f(x)-2ex|≤(x-1)2,研究函数f(x)在x=1处的可导件.
设则A与B().
随机试题
高速公路两侧白色半圆状的间隔距离是50米。
(2008年10月,2007年10月)按照里格斯的看法,棱柱社会还有三个重要的独特的特征,即:异质性、形式主义和_________。
________,言笑晏晏。
“求田问舍,怕应羞见,刘郎才气”中的典故出自()
女,19岁。上前牙松动3年,检查见上切牙松动Ⅱ度,扇形移位,口腔卫生较好,初步印象为局限性青少年牙周炎(局限性侵袭性牙周炎)。若已确诊,其可能还具有的特征如下,但不包括
已知某栓剂置换价为1.31,纯基质平均栓重0.6g,每个栓剂的平均含药重量为0.3275g,其含药栓需要基质的重量为
在某些时间、某些季节加强的监察工作是()。
城市规划管理的主要任务是对编制、实施城市规划给予:
简述我国夫妻共同财产制。
WhendidDr.Hubergethisowntelescope?
最新回复
(
0
)