首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设λ1,λ2,λ3是三阶矩阵A的三个不同特征值,a1,a2,a3分别是属于特征值λ1,λ2,λ3的特征向量,若a1,A(a1+a2),A2(a1+a2+a3)线性无关,则λ1,λ2,λ3满足_____________.
设λ1,λ2,λ3是三阶矩阵A的三个不同特征值,a1,a2,a3分别是属于特征值λ1,λ2,λ3的特征向量,若a1,A(a1+a2),A2(a1+a2+a3)线性无关,则λ1,λ2,λ3满足_____________.
admin
2019-11-25
44
问题
设λ
1
,λ
2
,λ
3
是三阶矩阵A的三个不同特征值,a
1
,a
2
,a
3
分别是属于特征值λ
1
,λ
2
,λ
3
的特征向量,若a
1
,A(a
1
+a
2
),A
2
(a
1
+a
2
+a
3
)线性无关,则λ
1
,λ
2
,λ
3
满足_____________.
选项
答案
≠0
解析
令x
1
a
1
+x
2
A(a
1
+a
2
)+x
3
A
2
(a
1
+a
2
+a
3
)=0,即(x
1
+λ
1
x
2
+λ
2
1
x
3
)a
1
+(λ
2
x
2
+λ
2
2
x
3
)a
2
+λ
2
3
x
3
a
3
=0,则有 x
1
+λ
1
x
2
+λ
2
1
x
3
=0,λ
2
x
2
+λ
2
2
x
3
=0,λ
2
3
x
3
=0,因为x
1
,x
2
,x
3
只能全为零,所以
≠0
λ
2
λ
3
≠0.
转载请注明原文地址:https://kaotiyun.com/show/foD4777K
0
考研数学三
相关试题推荐
设问A,B是否相似,并说明理由.
设A是m×n矩阵,证明:存在非零的n×s矩阵B,使得AB=O的充要条件是r(A)<n.
设A是n阶实对称矩阵,λ1,λ2,…,λn是A的n个互不相同的特征值,ξ1是A的对应于λ1的一个单位特征向量,则矩阵B=A一λ1ξ1ξ1T的特征值是_______.
证明:若A为n阶方阵,则有|A*|=|(-A)*|(n≥2).
设f(x)对一切x1,x2满足f(x1+x2)=f(x1)+f(x2),且f(x)在x=0处连续.证明:函数f(x)在任意点x0处连续.
曲线的切线与x轴和y轴围成一个图形,记切点的横坐标为a,求切线方程和这个图形的面积.当切点沿曲线趋于无穷远时,该面积的变化趋势如何?
设线性方程组则λ为何值时,方程组有解,有解时,求出所有的解.
设f(x),g(x)在[a,b]上二阶可导,且f(a)=f(b)=g(a)=0.证明:存在ξ∈(a,b),使f"(ξ)g(ξ)+2f’(ξ)g’(ξ)+f(ξ)g"(ξ)=0.
设连续函数z=f(x,y)满足则dz|(0,1)=_______
设φ(x)是以2π为周期的连续函数,且ψ’(x)=φ(x),ψ(0)=0.(1)求方程y’+ysinx=φ(x)ecosx的通解;(2)方程是否有以2π为周期的解?若有,请写出所需条件;若没有,请说明理由.
随机试题
TheInternetaffordsanonymitytoitsusers,ablessingtoprivacyandfreedomofspeech.Butthatveryanonymityisalsobehind
欧盟的机构中,能够处理与《罗马公约》相矛盾的事宜的是()
"耳"的五行属性是
昂丹司琼具有的特点为
阴阳盛衰决定着疾病的寒热变化,由阴偏胜引起的病理变化是
项目经理的素质不包括()。
关于爆炸极限下列说法错误的是()。
下列哪项不属于保险经纪从业人员在执业活动中守法遵规的表现?( )
资本市场的主要功能是实现长期资本融通,其主要特点有()。
某国有企业2016年度取得主营业务收入5000万元,其他业务收入1000万元,债务重组收益100万元,固定资产转让收入50万元;当年管理费用中的业务招待费60万元;该企业当年度可在企业所得税前扣除的业务招待费为()万元。
最新回复
(
0
)