首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-1,且α1=(1,a+1,2)T,α2=(a-1,-a,1)T分别是λ1,λ2对应的特征向量.又A的伴随矩阵A*有一个特征值为λ0,属于λ0的特征向量为α0=(2,-5a,2a+1)T.试求a、λ0的值
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-1,且α1=(1,a+1,2)T,α2=(a-1,-a,1)T分别是λ1,λ2对应的特征向量.又A的伴随矩阵A*有一个特征值为λ0,属于λ0的特征向量为α0=(2,-5a,2a+1)T.试求a、λ0的值
admin
2021-02-25
62
问题
设3阶实对称矩阵A的特征值λ
1
=1,λ
2
=2,λ
3
=-1,且α
1
=(1,a+1,2)
T
,α
2
=(a-1,-a,1)
T
分别是λ
1
,λ
2
对应的特征向量.又A的伴随矩阵A
*
有一个特征值为λ
0
,属于λ
0
的特征向量为α
0
=(2,-5a,2a+1)
T
.试求a、λ
0
的值,并求矩阵A.
选项
答案
由于|A|=λ
1
λ
2
λ
3
=-2,故A可逆. 由于α
0
是A
*
的属于λ
0
的特征向量.所以A
*
α
0
=λ
0
α
0
.于是AA
*
α
0
=λ
0
Aα
0
,即|A|α
0
=λ
0
Aα
0
,亦即-2α
0
=λ
0
Aα
0
.故[*].从而-2/λ
0
是A的特征值,α
0
是A的关于-2/λ
0
对应的特征向量. 又由于α
1
,α
2
为实对称矩阵A的不同特征值的特征向量,故α
1
,α
2
正交,即α
T
1
α
2
=0,得a=±1. 无论a=1还是a=-1,则有α
0
与α
1
,α
2
中任何一个都线性无关,所以α
0
应是矩阵A的属于λ
3
的特征向量, 于是有λ
3
=-2/λ
0
从而λ
0
=2.且α
0
与α
1
正交,即α
T
0
α
1
=5
2
+a-4=0,则a=4/5或a=-1,于是a=-1,λ
0
=2. 令[*],则P可逆,且 [*] 所以 [*]
解析
本题考查实对称矩阵相似对角矩阵的逆问题.运用实对称矩阵不同的特征值所对应的特征向量必正交的性质来确定a与λ
0
.
转载请注明原文地址:https://kaotiyun.com/show/gZ84777K
0
考研数学二
相关试题推荐
[*]
设=a(a≠0),求n及a的值.
微分方程y〞+y=-2x的通解为_________.
设L:+y2=1(x≥0,y≥0),过L上一点作切线,求切线与曲线所围成面积的最小值.
设函数z=f(x,y)满足,且f(x,0)=1,f′y(x,0)=x,则f(x,y)=().
已知四维列向量α1,α2,α3线性无关,若向量βi(i=1,2,3,4)是非零向量且与向α1,α2,α3均正交,则向量组β1,β2,β3,β4的秩为().
微分方程xy”-y’=x的通解是_______.
(2012年试题,三)已知函数若x→0时f(x)一a与xk是同阶无穷小,求常数k的值.
求下列方程通解或满足给定初始条件的特解:1)y+1=χeχ+y.2)χ+χ+sin(χ+y)=03)y′+ytanχ=cosχ4)(1+χ)y〞+y′=05)yy〞-(y′)2=y4,y(0)=1,y′(0
随机试题
艺术发生的根本动力是()。
马克思主义哲学认为或然率是对可能性()。
计算烧伤面积时,伤员五指并拢时手掌的面积,占全身体表面积的:
下列关于申请回避的说法中,错误的是:()
下列协调所有者与经营者矛盾的措施中,属于通过市场来约束经营者的办法是()。
某企业购业—材料—批,并向供货方开出银行承兑汇票—张,承诺3个月后付款。假若3个月后,企业无力偿付,会计人员对此的会计处理应为()。
简述数学问题设计的原则。
完全负刑事责任的精神障碍人有精神正常时期的“间歇性精神病人”。()
在Windows操作系统中,ipconfig/all命令的作用是()。
IPv6的地址长度为【】位。
最新回复
(
0
)