首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-1,且α1=(1,a+1,2)T,α2=(a-1,-a,1)T分别是λ1,λ2对应的特征向量.又A的伴随矩阵A*有一个特征值为λ0,属于λ0的特征向量为α0=(2,-5a,2a+1)T.试求a、λ0的值
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-1,且α1=(1,a+1,2)T,α2=(a-1,-a,1)T分别是λ1,λ2对应的特征向量.又A的伴随矩阵A*有一个特征值为λ0,属于λ0的特征向量为α0=(2,-5a,2a+1)T.试求a、λ0的值
admin
2021-02-25
59
问题
设3阶实对称矩阵A的特征值λ
1
=1,λ
2
=2,λ
3
=-1,且α
1
=(1,a+1,2)
T
,α
2
=(a-1,-a,1)
T
分别是λ
1
,λ
2
对应的特征向量.又A的伴随矩阵A
*
有一个特征值为λ
0
,属于λ
0
的特征向量为α
0
=(2,-5a,2a+1)
T
.试求a、λ
0
的值,并求矩阵A.
选项
答案
由于|A|=λ
1
λ
2
λ
3
=-2,故A可逆. 由于α
0
是A
*
的属于λ
0
的特征向量.所以A
*
α
0
=λ
0
α
0
.于是AA
*
α
0
=λ
0
Aα
0
,即|A|α
0
=λ
0
Aα
0
,亦即-2α
0
=λ
0
Aα
0
.故[*].从而-2/λ
0
是A的特征值,α
0
是A的关于-2/λ
0
对应的特征向量. 又由于α
1
,α
2
为实对称矩阵A的不同特征值的特征向量,故α
1
,α
2
正交,即α
T
1
α
2
=0,得a=±1. 无论a=1还是a=-1,则有α
0
与α
1
,α
2
中任何一个都线性无关,所以α
0
应是矩阵A的属于λ
3
的特征向量, 于是有λ
3
=-2/λ
0
从而λ
0
=2.且α
0
与α
1
正交,即α
T
0
α
1
=5
2
+a-4=0,则a=4/5或a=-1,于是a=-1,λ
0
=2. 令[*],则P可逆,且 [*] 所以 [*]
解析
本题考查实对称矩阵相似对角矩阵的逆问题.运用实对称矩阵不同的特征值所对应的特征向量必正交的性质来确定a与λ
0
.
转载请注明原文地址:https://kaotiyun.com/show/gZ84777K
0
考研数学二
相关试题推荐
函数在区间[0,+∞)上
A、 B、 C、 D、 D
设A,B为三阶矩阵且A不可逆,又AB+2B=O且r(B)=2,则|A+4E|=().
等式两边同时对戈求导,得yˊ=fˊ(x+y)(1+yˊ),[*]
若三阶方阵,试求秩(A).
下列矩阵中,正定矩阵是()
(2010年)设函数u=f(χ,y)具有二阶连续偏导数,且满足等式=0.确定a,b的值,使等式在变换ξ=χ+ay,η=χ+by下简化为=0.
以y=7e3x+2x为一个特解的三阶常系数齐次线性微分方程是____________.
微分方程满足初始条件y(1)=1的特解是y=__________。
对于实数x>0,定义对数函数依此定义试证:
随机试题
起到封闭管路或隔断管路作用的是()。
目前国际上采用较为普遍的避免国际双重征税的方法是
从用户和任务角度考察,Windows7是________操作系统。
医患关系要做到真诚相处,最主要的是
进口美国水果在报检时,除提供合同、发票、装箱单等贸易单证外,还应按要求提供( )。
若企业无负债,则财务杠杆利益会减小。()
维果斯基提出的“最近发展区”是指()。
2011年上半年,我国软件产业实现软件业务收入8065亿元,同比增长29.3%,增速比去年同期高0.2个百分点;实现利润103亿元,同比增长34.9%。其中,6月份完成软件业务收入1828亿元,同比增长32.9%,增速比5月份回升3.6个百分点。
计算机中对操作数进行逻辑左移1位,一般它的最低位是
黑猩猩堪称动物世界的“医学家”。如果哪只黑猩猩肚子痛,其同类会到几公里以外寻找一种植物,其叶子又硬又苦。但是黑猩猩知道,吃了它可以减轻痛苦。【C1】______,发现它含有抗病毒、驱虫和抗霉菌的物质。我们知道,大象、河马和水牛会经常泡在水里,这不
最新回复
(
0
)