首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αn—1是Rn中线性无关的向量组,β1,β2与α1,α2,…,αn—1正交,则( )
设α1,α2,…,αn—1是Rn中线性无关的向量组,β1,β2与α1,α2,…,αn—1正交,则( )
admin
2020-03-01
50
问题
设α
1
,α
2
,…,α
n—1
是R
n
中线性无关的向量组,β
1
,β
2
与α
1
,α
2
,…,α
n—1
正交,则( )
选项
A、α
1
,α
2
,…,α
n—1
,β
1
必线性相关。
B、α
1
,α
2
,…,α
n—1
,β
1
,β
2
必线性无关。
C、β
1
,β
2
必线性相关。
D、β
1
,β
2
必线性无关。
答案
C
解析
由n+1个n维向量必线性相关可知B选项错;
若α
i
(i=1,2,…,n—1)是第i个分量为1,其余分量全为0的向量,β
1
是第n个分量为1,其余分量全为0的向量,β
2
是第n个分量为2,其余分量全为0的向量,则α
1
,α
2
,…,α
n—1
,β
1
线性无关,β
2
=2β
1
,所以A和D两项错误。由排除法,故选C。
下证C选项正确:
因α
1
,α
2
,…,α
n—1
,β
1
,β
2
必线性相关,所以存在n+1个不全为零的数k
1
,k
2
,…,k
n—1
,l
1
,l
2
,使
k
1
α
1
+k
2
α
1
+ … +k
n—1
α
n—1
+l
1
β
1
+l
2
β
1
=0,
又因为α
1
,α
2
,…,α
n—1
线性无关,所以l
1
,l
2
一定不全为零,否则α
1
,α
2
,…,α
n—1
线性相关,产生矛盾。
在上式两端分别与β
1
,β
2
作内积,有
(l
1
β
1
+l
2
β
2
,β
1
)=0, (1)
(l
1
β
1
+l
2
β
2
,β
2
)=0, (2)
联立两式,l
1
×(1)+l
2
×(2)可得
(l
1
β
1
+l
2
β
2
,l
1
β
1
+l
2
β
2
)=0,
从而可得 l
1
β
1
+l
2
β
2
=0,
故β
1
,β
2
必线性相关。
转载请注明原文地址:https://kaotiyun.com/show/gjA4777K
0
考研数学二
相关试题推荐
设f(x)在x=a处可导,则等于
A、 B、 C、 D、 C
设当x→0时,f(x)=ln(1+x∫)一ln(1+sin∫x)是x的n阶无穷小,则正整数n等于
向量组α1,α2,…,αm线性无关的充分必要条件是().
累次积分f(rcosθ,rsinθ)rdr可以写成().
设α1,α2,α3是四元非齐次线性方程组AX=b的三个解向量,r(A)=3.且α1+α2=,α2+α3=,则方程组AX=b的通解为_______.
若a1,a2,a3,β1,β2都是4维列向量,且4阶行列式|a1,a2,a3,β1|=m,|a1,a2,β2,a3|=n,则4阶行列式|a1,a2,a3,β1+β2|=
(2003年试题,十)设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且.f’(x)>0.若极限存在,证明:(1)在(a,b)内f(x)>0;(2)在(a,b)内存在点ξ使(3)在(a,b)内存在与(2)中ξ相异的点η,使f’(η)(b2
设则f’x(0,1)=_____________.
设α1,α2,α3,α4是3维非零向量,则下列说法正确的是
随机试题
清代对于州县一级审理民事案件、轻微刑事案件等自理案件规定了审理期限,为()。
在Word2003的“文件”下拉菜单的下部,通常会列出若干文件,这些文件是_______。
肛门狭窄的处理中,以下哪一项是错误的:
可以翻转肾上腺素升压作用的是
以下哪项检查有助于诊断若需进行触诊检查,则应该
DNA的一级结构是
外敷能刺激皮肤,引起发泡,故皮肤过敏者应慎用有毒,不可过量服用,咳痰不利者慎服
农民集体所有的土地由农村集体经济组织或者( )经营管理。
下列程序的运行结果是______。#defineP(a)printf("%d",a)main(){intj,a[]={1,2,3,4,5,6,7},i=5;
Whatdoestheword"cheer"(Line2,Para.1)imply?HumansonEarthtodayarecharacterizedby______.
最新回复
(
0
)