首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
口袋内有四个同样的球,分别标有号码1,2,3,4.每次从中任取一个球(每次取后放回去),连续两次.如果第i次取到球上的编号记为ai,i=1,2,记事件A表示事件“a1≥4a2”,则该试验的样本空间Ω=___________;事件A=___________;
口袋内有四个同样的球,分别标有号码1,2,3,4.每次从中任取一个球(每次取后放回去),连续两次.如果第i次取到球上的编号记为ai,i=1,2,记事件A表示事件“a1≥4a2”,则该试验的样本空间Ω=___________;事件A=___________;
admin
2018-06-14
46
问题
口袋内有四个同样的球,分别标有号码1,2,3,4.每次从中任取一个球(每次取后放回去),连续两次.如果第i次取到球上的编号记为a
i
,i=1,2,记事件A表示事件“a
1
≥4a
2
”,则该试验的样本空间Ω=___________;事件A=___________;概率P(A)=___________.
选项
答案
Ω={(1,1),…,(1,4),(2,1),…,(4,4)};A={(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(4,4)};P(A)=[*]
解析
Ω={(i,j)=i,j=1,2,3,4}={(1,1),…,(1,4),(2,1),…,(4,4)};
A={(i,j):i
2
≥4j,i,j=1,2,3,4}
={(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(4,4)};
P(A)=
.
转载请注明原文地址:https://kaotiyun.com/show/h1W4777K
0
考研数学三
相关试题推荐
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3).证明:ξ1,ξ2∈(0,3),使得f’(ξ1)=f’(ξ2)=0.
设y=ex为微分方程xy’+P(x)y=x的解,求此微分方程满足初始条件y(ln2)=0的特解.
求下列极限:
将三封信随机地投入编号为1,2,3,4的四个邮箱,求没有信的邮箱数X的概率函数.
已知随机变量X~N(0,1),求:(Ⅰ)Y=的分布函数;(Ⅱ)Y=eX的概率密度;(Ⅲ)Y=|X|的概率密度.(结果可以用标准正态分布函数Ф(x)表示)
设f(x)在(-∞,+∞)上具有连续导数,且f’(0)≠0.令F(x)=求证:(Ⅰ)若f(x)为奇函数,则F(x)也是奇函数.(Ⅱ)(0,0)是曲线y=F(x)的拐点.
设矩阵A与B相似,且A=.求可逆矩阵P,使P-1AP=B.
设f(x)在[a,+∞)有连续导数,且f’(x)>k>0在(a,+∞)上成立,又f(a)<0,其中k是一个常数.求证:方程f(x)=0在内有且仅有一个实根.
设函数y1(x),y2(x),y3(x)线性无关,而且都是非齐次线性方程(6.2)的解,C1,C2为任意常数,则该非齐次方程的通解是
若向量组α1,α2,α3线性相关,向量组α2,α3,α4线性无关,试问α4能否由α1,α2,α3线性表出?并说明理由.
随机试题
CJO系列交流接触器,主要由________、________、________及________组成。
嗜铬细胞瘤的临床表现包括
女,18岁,食欲不好,厌油腻,肝大,肝区疼痛,临床诊断急性普通性肝炎,此时患者肝出现病变为
公务员法属于()。
对于定量研究与定性研究的结果范围,下列说法正确的是()。
在有感染的肉芽组织创面上植皮,宜选用()。
有段时间,一款名叫“ZAO”的AI换脸技术软件在网上爆红,并且因为涉嫌侵犯用户隐私等问题引起大众关注。AI换脸是用基于人工智能的人体图像合成技术生成“假脸”,就是将目标人物各个角度的人脸照片一帧帧贴在被换对象的视频画面上,生成假脸视频。该技术曾经应用于电影
阅读以下关于校园网组建的技术说明,根据要求回答问题1至问题4。【说明】某学校新建一栋21层教学综合大楼,楼层两端相距100m,距一端50m处有一弱电竖井,弱电竖井贯穿每层的弱电室。每层楼均有100个信息点(所有信息点要求具有100Mb/s的数据传
以下()操作不能触发滚动条Change事件。
A、Herkidswillarrivehomeafterschool.B、Sheistooexhaustedtowork.C、Shehasfinishedherwork.D、Themandoesnotaskhe
最新回复
(
0
)