首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
讨论曲线y=2lnx与y=2x+ln2x+k在(0,+∞)内的交点个数(其中k为常数).
讨论曲线y=2lnx与y=2x+ln2x+k在(0,+∞)内的交点个数(其中k为常数).
admin
2018-11-11
78
问题
讨论曲线y=2lnx与y=2x+ln
2
x+k在(0,+∞)内的交点个数(其中k为常数).
选项
答案
令f(x)=2x+ln
2
x+k-2lnx(x∈(0,+∞)),于是本题两曲线交点个数即为函数f(x)的零点个数.由 [*] 令g(x)=x+lnx-l [*] 令f’(x)=0可解得唯一驻点x
0
=1∈(0,+∞). 当0<x<1时f’(x)<0,f(x)在(0,1]单调减少;而当x>1时f’(x)>0,f(x)在[1.+∞)单调增加.于是f(1)=2+k为f(x)在(0,+∞)内唯一的极小值点,且为(0,+∞)上的最小值点.因此f(x)的零点个数与最小值f(1)=2+k的符号有关. 当f(1)>0即k>-2时f(x)在(0,+∞)内恒为正值函数,无零点. 当f(1)=0即k=-2时f(x)在(0,+∞)内只有一个零点x
0
=1. 当f(1)<0即k<-2时需进一步考察f(x)在x→0
+
与x→+∞的极限: [*] 由连续函数的零点定理可得,[*]x
1
∈(0,1)与x
2
∈(1,+∞)使得f(x
1
)=f(x
2
)=0,且由f(x)在(0,1)与(1,+∞)内单调可知f(x)在(0,1)内与(1,+∞)内最多各有一个零点,所以当k<-2时,f(x)在(0,+∞)内恰有两个零点.
解析
转载请注明原文地址:https://kaotiyun.com/show/hDj4777K
0
考研数学二
相关试题推荐
曲线点处的法线方程.
设某班车起点上车人数X服从参数为λ(λ>0)的泊松分布,如果每位乘客在中途下车的概率为P(0<p<1),并且他们在中途下车与否是相互独立的.用Y表示在中途下车的人数,求(1)在发车时有n个乘客的条件下,中途有m个人下车的概率;(2)(X,Y)的联合概率分布
试证向量a=一i+3j+2k,b=2i一3j一4k,c=一3i+12j+6k在同一平面上.
已知3阶实对称矩阵A满足trA=一6,AB=C,其中求k的值与矩阵A.
设矩阵的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.
将函数arctanx一x展开成x的幂级数.
设级数的和函数为S(x),求S(x)的表达式.
设函数y(x)具有二阶导数,且曲线l:y=y(x)与直线y=x相切于原点,记α为曲线l在点(x,y)处切线的倾角,若,求y(x)的表达式.
设A为3阶矩阵,|A|=6,|A+E|=|A-2E|=|A+3E|=0,试判断矩阵(2A)*是否相似于对角矩阵,其中(2A)*是(2A)的伴随矩阵.
设当时,求x100,y100;
随机试题
三级管理结构有三个纵向层次,决策者划分销售部门,实行()。
论劳动保障监察的基本原则。
在PowerPoint2010中添加新幻灯片,以下操作正确的是()。
多发性骨髓瘤患者死亡的主要原因是
药品委托生产申报资料有
背景资料:某水利枢纽工程项目包括大坝、水电站等建筑物。在水电站厂房工程施工期间发生如下事件:事件一:施工单位提交的施工安全技术措施部分内容如下:(1)爆破作业,必须统一指挥,统一信号,划定安全警戒区,并明确安全警戒人员。在引爆时,无关人员一律退到安全
该批货物的申报日期应是:货物向海关申报进口时,除报关单外必须向海关提交的单证包括:
财政法制的本质决定于()。
计算
TheBlogRevolutionAccordingtoChina’sbiggestbloggingserviceproviderblogcn.com,thenumberofusershassoaredfrom1
最新回复
(
0
)