首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上可微,,a<f(x)<b,且f’(x)≠1,x∈(a,b).试证:在(a,b)内方程f(x)=x有唯一实根.
设f(x)在[a,b]上可微,,a<f(x)<b,且f’(x)≠1,x∈(a,b).试证:在(a,b)内方程f(x)=x有唯一实根.
admin
2021-02-25
75
问题
设f(x)在[a,b]上可微,
,a<f(x)<b,且f’(x)≠1,x∈(a,b).试证:在(a,b)内方程f(x)=x有唯一实根.
选项
答案
存在性.令F(x)=f(x)-x,显然F(x)在[a,b]上连续,又F(a)=f(a)-a>0,F(b)=f(b)-b<0,则由零点定理可知,至少存在一点ξ∈(a,b),使F(ξ)=0,即f(ξ)=ξ. 用反证法证唯一性.设存在η∈(a,b),η≠ξ,使F(η)=0,则由罗尔定理可知,在η与ξ之间存在一点c,使f’(c)=f’(c)-1=0,即f’(c)=1,这与f’(x)≠1,x∈(a,b)矛盾.
解析
转载请注明原文地址:https://kaotiyun.com/show/hO84777K
0
考研数学二
相关试题推荐
设f(x)在[a,b]上有二阶导数,且f’(x)>0.(Ⅰ)证明至少存在一点ξ∈(a,b),使∫abf(x)dx=f(b)(ξ一a)+f(a)(b—ξ);(Ⅱ)对(Ⅰ)中的ξ∈(a,6),求.
设A是n阶矩阵,证明:(Ⅰ)r(A)=1的充分必要条件是存在n维非零列向量α,β,使得A=αβT;(Ⅱ)r(A)=1且tr(A)≠0,证明A可相似对角化.
讨论方程lnx=kx的根的个数.
设a为正常数,f(x)=xea-aex-x+a.证明:当x>a时,f(x)
设函数f(x)在(-∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2-4),若对任意的x都满足f(x)=kf(x+2),其中k为常数。写出f(x)在[-2,0)上的表达式;
(2012年试题,三)已知函数求a的值;
(2002年)设函数f(χ)在χ=0的某邻域内具有二阶连续导数,且f(0)≠0,f′(0)≠0,f〞(0)≠0.证明:存在惟一的一组实数λ1,λ2,λ3,使得当h→0时,λ1f(h)+λ2f(2h)+λ3f(3h)-f(0)是比h2高阶的无穷小.
已知f(x)是周期为5的连续函数,它在x=0的某个邻域内满足关系式f(1+sinx)-3f(1-sinx)=8x+α(x),其中α(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求曲线y=f(x)在点(6,f(6))处的切线方程。
设f(x)在x=0的某邻域内有定义,且满足,求极限.
极限().
随机试题
截至目前,我国颁布实施的宪法有()
病毒性心肌炎气阴亏虚证,治疗首选
链激酶属于
此时应考虑对该病人高热原因的进一步确诊,应采用的可靠方法是
随着社会经济的发展,为适应当今社会的需要,管理学家们提出了一些新的组织设计原则,主要包括()。
下列哪些情形下,申请人在申请专利前应当事先报经国务院专利行政部门进行保密审查?
胆汁是由()分泌的。
()是我国最早最完备的建筑学著作。
Doyouneedanybodytoassistyouinyourwork?
Organicfoodisconsideredbetterthanmedicinetokeeppeoplespiritualfitness.
最新回复
(
0
)