首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求区域Ω的体积V,其中Ω是半球面z=及旋转抛物面x2+y2=2az所围成.
求区域Ω的体积V,其中Ω是半球面z=及旋转抛物面x2+y2=2az所围成.
admin
2018-11-21
79
问题
求区域Ω的体积V,其中Ω是半球面z=
及旋转抛物面x
2
+y
2
=2az所围成.
选项
答案
先解方程组[*]得两曲面的交线为[*]由立体的形状可知,它在Oxy平面上的投影为圆域D={(x,y)|x
2
+y
2
≤2a
2
},如图9.63.因此Ω的体积为 [*]
解析
区域Ω是由上、下两张曲面z=z
2
(x,y)≥z=z
1
(x,y)所围成,这时关键要求出它在xy平面上的投影区域D.常用的方法是:由
消去z得某方程F(x,y)=0,D就是xy平面上由曲线F(x,y)=0所围的区域.
转载请注明原文地址:https://kaotiyun.com/show/hZg4777K
0
考研数学一
相关试题推荐
求解二阶微分方程的初值问题
过z轴及点M(3,-2,5)的平面方程是__________.
(1)证明曲线积分在曲线L不经过x轴的情况下,积分与路径无关;(2)如果曲线L的两端点为A(π,1)及B(π,2),计算积分的值.
若函数F(x,y,z)满足F″xx+F″yy+F″zz=0,证明其中Ω是光滑闭曲面S所围的区域,是F在曲面S上沿曲面S的外向法线的方向导数.
问满足方程一y″一2y′=0的哪一条积分曲线通过点(0,一3),在该点处有倾角为arctan6的切线且曲率为0?
已知(X,Y)在以点(0,0),(1,-1),(1,1)为顶点的三角形区域上服从均匀分布。(Ⅰ)求(X,Y)的联合密度函数f(x,y);(Ⅱ)求边缘密度函数fX(x),fY(y)及条件密度函数fX(x|y),fY|X(y|x);并问X与Y是否独立;(
半圆形闸门半径为R米,将其垂直放入水中,且直径与水面齐平,设水的比重ρ=1。若坐标原点取在圆心,x轴正向朝下,则闸门所受压力P=()
设有一半径为R的球体,P0是此球的表面上的一个定点,球体上任一点的密度与该点到P0距离的平方成正比(比例常数k>0),求球体的重心位置。
已知L是第一象限中从点(0,0)沿圆周x2+y2=2x到点(2,0),再沿圆周x2+y2=4到点(0,2)的曲线段,计算曲线积分3x2ydx+(x3+x-2y)dy。
与α1=(1,2,3,-1)T,α2=(0,1,1,2)T,α3=(2,1,3,0)T都正交的单位向量是______。
随机试题
DNA聚合酶Ⅲ催化的反应
血栓形成多见于
甘露醇治疗脑水肿应
下列选项中属于假药的是
药品经营企业可以从事的采购活动是()
关于仲裁裁决的撤销,根据我国现行法律,下列哪一选项是正确的?
下列权利可以质押的有()。
中华人民共和国年满18周岁的公民都有选举权和被选举权。()
王某被录用为公务员二年后,提出辞职,任免机关()。
A、 B、 C、 A
最新回复
(
0
)