首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,对于齐次线性方程组(I)Anx=0和(Ⅱ)An+1x=0,现有四个命题: ①(I)的解必是(Ⅱ)的解; ②(Ⅱ)的解必是(I)的解 ③(I)的解不是(Ⅱ)的解; ④(Ⅱ)的解不是(I)的解。 以上命题中正确的是( )
设A是n阶矩阵,对于齐次线性方程组(I)Anx=0和(Ⅱ)An+1x=0,现有四个命题: ①(I)的解必是(Ⅱ)的解; ②(Ⅱ)的解必是(I)的解 ③(I)的解不是(Ⅱ)的解; ④(Ⅱ)的解不是(I)的解。 以上命题中正确的是( )
admin
2018-12-19
39
问题
设A是n阶矩阵,对于齐次线性方程组(I)A
n
x=0和(Ⅱ)A
n+1
x=0,现有四个命题:
①(I)的解必是(Ⅱ)的解; ②(Ⅱ)的解必是(I)的解
③(I)的解不是(Ⅱ)的解; ④(Ⅱ)的解不是(I)的解。
以上命题中正确的是( )
选项
A、①②。
B、①④。
C、③④。
D、②③。
答案
A
解析
若A
n
α=0,则A
n+1
α=A(A
n
α)=A0=0,即若α是(1)的解,则α必是(2)的解,可见命题①正确。
如果A
n+1
α=0,而A
n
α≠0,那么对于向量组α,Aα,A
2
α,…,A
n
α,一方面,若kα+k
1
Aα+k
2
A
2
α+…+k
n
A
n
α=0,用A
n
左乘上式的两边得kA
n
α=0。由A
n
α≠0可知必有k=0。类似地可得k
1
=k
2
=…=
n
=0。因此,α,Aα,A
2
α,…,A
n
α线性无关。
但另一方面,这是n+1个n维向量,它们必然线性相关,两者矛盾。故A
n+1
α=0时,必有A
n
α=0,即(2)的解必是(1)的解。因此命题②正确。
故选A。
转载请注明原文地址:https://kaotiyun.com/show/htj4777K
0
考研数学二
相关试题推荐
A为3阶实对称矩阵,A的秩为2,且求矩阵A.
A为3阶实对称矩阵,A的秩为2,且求A的所有特征值与特征向量;
已知非齐次线性方程组554有3个线性无关的解,证明方程组系数矩阵A的秩r(A)=2;
已知可对角化,求可逆矩阵P及对角矩阵,使P一1AP=A.
设矩阵A=(α1,α2,α3,α4),其中a2,a3,a4线性无关,a1=2a2一a3,向量b=a1+a2+a3+a4,求方程Ax=b的通解.
非齐次线性方程组Ax=B中,系数矩阵A和增广矩阵的秩都等于4,A是4×6矩阵,则()
设方阵A满足A2一A一2层=0,证明A及A+2E都可逆,并求A一1及(A+2E)一1.
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是A的伴随矩阵,E为n阶单位矩阵.证明矩阵Q可逆的充分必要条件是αTA一1α≠b.
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.证明B可逆;
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:存在两个不同的点η,ξ∈(0,1),使得f’(η)f’(ξ)=1.
随机试题
Afamousteacherwasspeakingtothestudentsatourschool.Hebeganhislessonbyholdingupa¥100bill.Thenhesaidtothe
属于组织适应性改变的是()
患者,男性,27岁,高空坠落致脊柱骨折伴脊髓损伤,查体示:双上肢呈屈曲状态,可完成屈肘和腕背伸动作,不能伸肘,双侧中指以下感觉丧失,其损伤平面为
男性,28岁,于高处取物时不慎摔下,骑跨于铁栏杆上,伤后尿道出血,会阴部及阴囊肿胀,最可能诊断为
工业用地年租制的租用年限是()。
假设通货膨胀率为2%,名义利率为10%,则实际利率为()。
在国内航空运输中,对托运行李的赔偿责任限额,承运人按照每千克()元人民币承担责任。
教育的本质是___________。
TheresponsetotheconceitswasnotwarmenoughsoIdecidedtopostponebookingtickets______laterintheyear.
A、Anyonewhoisill.B、Womenwhoneedtheknowledgeoflaw.C、Bothmenandwomenwhohaveproblemsatwork.D、Femalestudentswh
最新回复
(
0
)