首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设p(x),g(x)与f(x)均为连续函数,f(x)≠0.设y1(x),y2(x)与y3(x)是二阶线性非齐次方程y’’+p(x)y’+q(x)y=f(x) ①的3个解,且则式①的通解为__________.
设p(x),g(x)与f(x)均为连续函数,f(x)≠0.设y1(x),y2(x)与y3(x)是二阶线性非齐次方程y’’+p(x)y’+q(x)y=f(x) ①的3个解,且则式①的通解为__________.
admin
2015-08-17
69
问题
设p(x),g(x)与f(x)均为连续函数,f(x)≠0.设y
1
(x),y
2
(x)与y
3
(x)是二阶线性非齐次方程y’’+p(x)y’+q(x)y=f(x) ①的3个解,且
则式①的通解为__________.
选项
答案
y=C
1
(y
1
一y
2
)+C
2
(y
2
一y
3
)+y
1
,其中C
1
,C
2
为任意常数
解析
y=C
1
(y
1
一y
2
)+C
2
(y
2
一y
3
)+y
1
,其中C
1
,C
2
为任意常数@解析@由非齐次线性方程的两个解,可构造出对应的齐次方程的解,再证明这样所得到的解线性无关便可.y
1
一y
2
与y
2
一y
3
均是式①对应的线性齐次方程
y’’+p(x)y’+q(x)y=0 ②
的两个解.今证它们线性无关.事实上,若它们线性相关,则存在两个不全为零的常数k
1
与k
2
使k
1
(y
1
y
2
)+k
2
(y
2
一y
3
)=0. ③
设k
1
≠0,又由题设知y
2
一y
3
≠0,于是式③可改写为
矛盾.若k
1
=0,由y
2
一y
3
≠0,故由式③推知k
2
=0矛盾.这些矛盾证得y
1
一y
2
与y
2
一y
3
线性无关.
于是Y=C
1
(y
1
一y
2
)+C
2
(y
2
一y
3
) ④
为式②的通解,其中C
1
,C
2
为任意常数,从而知y=C
1
(y
1
一y
2
)+C
2
(y
2
一y
3
)+y
1
⑤为式①的通解.
转载请注明原文地址:https://kaotiyun.com/show/j1w4777K
0
考研数学一
相关试题推荐
微分方程y2dx+(x2-xy)dy=0的通解为________.
微分方程y"-4y=e2x+x的特解形式为().
设η1,…,ηs是非齐次线性方程组Ax=b的s个解,k1,…,ks为实数,满足k1+k2+…+ks=1.证明x=k1η1+k2η2+…+ksηs也是它的解.
设A,B为n阶矩阵.(1)是否有AB~BA;(2)若A有特征值1,2,…,n,证明:AB~BA.
设A为3阶实对称矩阵,且满足条件A2+2A=O.已知A的秩r(A)=2.当k为何值时,矩阵A+kE为正定矩阵,其中E为3阶单位矩阵.
已知二次型f(χ1,χ2,χ3)=XTAχ在正交变换χ=Qy下的标准形为y12+y22,且Q的第3列为.(Ⅰ)求矩阵A;(Ⅱ)证明A+E为正定矩阵,其中E为3阶单位矩阵.
设α1,α2,…,αn为n个n维线性无关的向量,A是n阶矩阵.证明:Aα1,Aα2,…,Aαn线性无关的充分必要条件是A可逆.
求A=的特征值和特征向量.
设3阶矩阵A有3个特征向量η1=(1,2,2)T,η2=(2,-2,1)T,η3=(-2,-1,2)T,它们的特征值依次为1,2,3,求A.
随机试题
不含手性碳原子的氨基酸是
背景资料:某新建排涝泵站装机容量为8×250kW,采用堤后式布置于某干河堤防背水侧,主要工程内容有:①泵室(电机层以下);②穿堤出水涵洞(含出口防洪闸);③进水前池;④泵房(电机层以上);⑤压力水箱(布置在堤脚外);⑥引水渠;⑦机组设备安装等。施
隧道监控量测时,测点应安设在距开挖面()m的范围内。
下列关于年金的个人所得税处理中,不正确的是()。
请认真阅读下文,并按要求作答。草原这次,我看到了草原。那里的天比别处的更可爱,空气是那么清鲜,天空是那么明朗,使我总想高歌一曲,表示我满心的愉快。在天底下,一碧千里,而并不茫茫。四面都有小丘,平地是绿的,小丘也是
简述蔡元培改革北大的教育实践。
下列犯罪中由过失构成的犯罪是()。
数据库设计包括两个方面的设计内容,它们是
ItwassaidbySirGeorgeBernardShawthat"EnglandandAmericaaretwocountriesseparatedbythesamelanguage."Myfirstp
TVLinkedtoLowerMarksA)Theeffectoftelevisiononchildrenhasbeendebatedeversincethefirstsetswereturnedon.Nowt
最新回复
(
0
)