首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设η*是非齐次线性方程组Ax=b的一个解,ξ1,ξn-r是对应的齐次线性方程组的一个基础解系,证明: η*,ξ1,…,ξn-r线性无关.
设η*是非齐次线性方程组Ax=b的一个解,ξ1,ξn-r是对应的齐次线性方程组的一个基础解系,证明: η*,ξ1,…,ξn-r线性无关.
admin
2021-02-25
63
问题
设η
*
是非齐次线性方程组Ax=b的一个解,ξ
1
,ξ
n-r
是对应的齐次线性方程组的一个基础解系,证明:
η
*
,ξ
1
,…,ξ
n-r
线性无关.
选项
答案
设有关系式kη
*
+k
1
ξ
1
+…+k
n-r
ξ
n-r
=0.用矩阵A左乘两端,有 O=kAη
*
+k
1
Aξ
1
+…+k
n-r
Aξ
n-r
=kAη
*
=kb. 所以k=0,从而有k
1
ξ
1
+…+k
n-r
ξ
n-r
=0,而ξ
1
,…,ξ
n-r
线性无关, 所以k
1
=…=k
n-r
=0,从而有η
*
,ξ
1
,…,ξ
n-r
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/j484777K
0
考研数学二
相关试题推荐
设有向量组(I):α1=(1,0,2)T,α2=(1,1,3)T,α1=(1,-1,a+2)T和向量组(II):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.试问:当a为何值时,向量组(I)与(II)等价?当以为何值
设f(x)在[0,1]上连续,证明:存在ξ∈(0,1),使得
设A,B是n阶可逆矩阵,且A~B,则①A-1~B-1;②AT~BT;③A*~B*;④AB~BA.其中正确的个数是()
已知向量组α1,α2,α3和β1,β2,β3,β4都是4维实向量,其中r(α1,α2,α3)=2,r(β1,β2,β3,β4)>1,并且每个βi与α1,α2,α3都正交.则r(β1,β2,β3,β4)=
设三阶常系数齐次线性微分方程有特解y1=ex,y2=2xex,y3=3e-x,则该微分方程为().
设3阶矩阵A=(α1,α2.α3)有3个不同的特征值,且α3=α1+2α2.证明:r(A)=2;
设二次型f(x1,x2,x3)=ax12+ax22+(a一1)x32+2x1x3一2x2x3.(Ⅰ)求二次型f的矩阵的所有特征值;(Ⅱ)若二次型f的规范形为y12+y22,求a的值.
(97)λ取何值时,方程组无解,有唯一解或有无穷多解?并在有无穷多解时写出方程组的通解.
设三阶矩阵A的特征值为λ1=-1,λ2=,其对应的特征向量为α1,α2,α3,令P=(2α3,-3α1,-α2),则P-1(A-1+2E)P=________
设三阶方阵A,B满足A—1BA=6A+BA,且,则B=______。
随机试题
用单角铣刀兼铣齿槽齿背时,当计算出转角Φ的数值后,还须换算成(),以便操作使用。
初步鉴定肠道致病菌与非肠道菌常用的试验是
依据《中华人民共和国文物保护法》,工程设计方案应当根据()经相应文物行政部门同意后,报城乡建设规划部门批准。
将现金存入银行的业务,应根据()登记现金日记账的支出栏。
某公司进口圆钢一批,成交价格为CIF天津USD1000。已知外汇牌价为USD100=850人民币,关税税率为10%,增值税税率为17%。海关于1998年9月1日填发税款缴款书,该公司于1998年9月17日缴款,请指出计算错误的滞纳金金额是()
根据外汇管理法律制度的规定,下列表述中。不正确的是()。
劳动合同的种类不包括()。
最古老、适用范围最广的课程类型是______。
与其他许多灵长目动物一样,梳理毛发对狮尾狒来说不仅仅与清洁有关,这也是它们建立关系的方式。狮尾狒的生活中充斥着_______,这里有阴谋团体、有篡权政变、还有帮派结盟。它们通过为彼此剔除毛发中的寄生虫、揉捏皮肤来巩固交情。填入划横线部分最恰当的一项是:
某学校初中二年级五班的物理老师要求学生两人一组制作一份物理课件。小曾与小张自愿组合,他们制作完成的第一章后三节内容见文档“第3—5节.pptx”,前两节内容存放在文本文件“第1—2节.pptx”中。小张需要按下列要求完成课件的整合制作:将演示文稿“第3
最新回复
(
0
)