首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A∈Pn×n. (1)证明与A可交换的矩阵集合C(A)构成Pn×n的一个子空间. (2)当A=时,求C(A)的维数和一组基.
设A∈Pn×n. (1)证明与A可交换的矩阵集合C(A)构成Pn×n的一个子空间. (2)当A=时,求C(A)的维数和一组基.
admin
2020-09-25
147
问题
设A∈P
n×n
.
(1)证明与A可交换的矩阵集合C(A)构成P
n×n
的一个子空间.
(2)当A=
时,求C(A)的维数和一组基.
选项
答案
(1)E
n
∈C(A),所以C(A)非空.设任意B,C∈C(A),则AB=BA,AC=CA,从而可得A(B+C)=AB+AC=BA+CA=(B+C)A,所以B+C∈C(A). 任取k∈R,则A(kB)=k(AB)=k(BA)=(ka)A,所以kB∈C(A).从而可得C(A)对于加法和数乘均封闭,所以C(A)是P
n×n
的一个子空间. (2)任意B∈C(A),则AB=BA,由矩阵运算可知B是对角矩阵;反之,任一对角矩阵B都与A可换,从而可得B∈C(A),所以C(A)是由对角矩阵组成的.所以 [*] 是C(A)的一组基,并且维数为n.
解析
转载请注明原文地址:https://kaotiyun.com/show/jWx4777K
0
考研数学三
相关试题推荐
设随机变量X服从(0,2)上的均匀分布,则随机变量Y=X2在(0,4)内的密度函数为Fy(y)=_________.
一批产品中一等品、二等品、三等品的比例分别为60%,30%,10%,从中任取一件结果不是三等品,则取到一等品的概率为________.
若a1,a2,a3,β1,β2都是4维列向量,且4阶行列式|a1,a2,a3,β1|=m,|a1,a2,β2,a3|=n,则4阶行列式|a1,a2,a3,β1+β2|=
已知矩阵A=只有一个线性无关的特征向量,那么A的三个特征值是________。
已知实二次型f(x1,x2,x3)=a(x12,x22,x32)+4x1x2+4x1x3+4x2x3经正交变换x=Py可化成标准形f=6y12,则a=_______.
已知α1,α2,α3,β,γ都是4维列向量,且|α1,α2,α3,β|=a,|β+γ,α3,α2,α1|=b,则|2γ,α1,α2,α3|=________.
已知X=AX+B,其中求矩阵X.
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。(Ⅰ)计算PTDP,其中P=;(Ⅱ)利用(Ⅰ)的结果判断矩阵B—CTA-1C是否为正定矩阵,并证明你的结论。
[2010年]设f1(x)为标准正态分布的概率密度,f2(x)为[-1,3]上均匀分布的概率密度.若为概率密度,则a,b应满足().
设有n元实二次型f(x1,x2,…,xn)=(x1+α1x2)2+(x2+x2x3)2+…+(xn-1+an-1xn)2+(xn+anx1)2,其中ai(i=1,2,…,n)为实数。试问:当a1,a2,…,an满足何种条件时,二次型f(x1,x2,…,xn
随机试题
人工布放光缆过程中,下列操作哪些不符合要求()
制造设备在深冷操作中可使用()。
我某进出口公司欲出口东北大豆100公吨,发盘的内容为:“兹可供东北大豆100公吨,每吨180美元CIF旧金山,6至7月份装运,限本月21日复到我方有效。”对方收到我方发盘后,在发盘规定的有效期内电复:“你方发盘接受,请用新麻袋包装。”问:对方的接
发生哪些情形,当事人可以解除合同?
长期的菲利普斯曲线的形状是()。
出售投资性房地产的净收益,通过营业外收入科目核算。()
关于态度转变,正确的说法包括()。
以下关于“勤俭节约,反对浪费”的叙述正确的是()。
Flynn分类法基于信息流特征将计算机分成4类,其中_______只有理论意义而无实例。
—Doyoulikeorangejuice?—Yes.Somuch______thatIdrinkitalmosteverydayinsummer.
最新回复
(
0
)