首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A∈Pn×n. (1)证明与A可交换的矩阵集合C(A)构成Pn×n的一个子空间. (2)当A=时,求C(A)的维数和一组基.
设A∈Pn×n. (1)证明与A可交换的矩阵集合C(A)构成Pn×n的一个子空间. (2)当A=时,求C(A)的维数和一组基.
admin
2020-09-25
83
问题
设A∈P
n×n
.
(1)证明与A可交换的矩阵集合C(A)构成P
n×n
的一个子空间.
(2)当A=
时,求C(A)的维数和一组基.
选项
答案
(1)E
n
∈C(A),所以C(A)非空.设任意B,C∈C(A),则AB=BA,AC=CA,从而可得A(B+C)=AB+AC=BA+CA=(B+C)A,所以B+C∈C(A). 任取k∈R,则A(kB)=k(AB)=k(BA)=(ka)A,所以kB∈C(A).从而可得C(A)对于加法和数乘均封闭,所以C(A)是P
n×n
的一个子空间. (2)任意B∈C(A),则AB=BA,由矩阵运算可知B是对角矩阵;反之,任一对角矩阵B都与A可换,从而可得B∈C(A),所以C(A)是由对角矩阵组成的.所以 [*] 是C(A)的一组基,并且维数为n.
解析
转载请注明原文地址:https://kaotiyun.com/show/jWx4777K
0
考研数学三
相关试题推荐
设3阶矩阵A的特征值为1,2,2,E为3阶单位矩阵,则|4A-1-E|=_____.
已知α1,α2,α3,β,γ都是4维列向量,且|α1,α2,α3,β|=a,|β+γ,α3,α2,α1|=b,则|2γ,α1,α2,α3|=________.
设A=,B是3阶非零矩阵,且AB=O,则a=________
设A,B为随机事件,则P(A)=P(B)充分必要条件是()
(97年)设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,I为n阶单位矩阵.(1)计算并化简PQ;(2)证明:矩阵Q可逆的充分必要条件是αTA-1α≠b.
设有两条抛物线y=nx2+1/n和y=(n+1)x2+1/(n+1).记它们交点的横坐标的绝对值为an.求两条抛物线所围成的平面图形的面积Sn;
设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.证明矩阵Q可逆的充分必要条件是αTA-1α≠b.
设某酒厂有一批新酿的好酒,如果现在(假定t=0)就售出,总收入为假定银行的年利润为r,并以连续复利计息.试求窖藏多少年售出可使总收入的现值最大,并求r=0.06时的t值.
设X1,X2,…,Xn是来自标准正态总体的简单随机样本,和S相应为样本均值和样本标准差,则().
随机试题
2017年1—2月,全国规模以上工业企业实现利润总额10156.8亿元,同比增长31.5%。1-2月,规模以上工业企业中国有控股企业实现利润总额2336.3亿元,同比增长1倍;集体企业实现利润总额68.5亿元,增长9.6%;股份制企业实现利润总额6976
电控自动变速器的检修有哪些注意事项?
成本控制中的主要对象是主要费用中的变动费用。()
利用控制图进行质量控制统计分析时,出现的异常现象是指( )。
级配碎石用于()及其以下公路时,也可用自动平地机摊铺混合料。
我国当前的资金信托业务不包括( )。
甲与乙登记结婚3年后,乙向法院请求确认该婚姻无效。乙提出的下列理由可以成立的是
对长度为10的线性表进行冒泡排序,最坏情况下需要比较的次数为()。
Whenwouldtheappointmentbe?
TheMinnesotaSenateapprovedameasurethatwouldhaveestablishedthenation’sfirstconstitutionalfighttohuntandfish,but
最新回复
(
0
)