首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1999年)设f(x)是连续函数,F(x)是f(x)的原函数,则( )
(1999年)设f(x)是连续函数,F(x)是f(x)的原函数,则( )
admin
2018-04-17
62
问题
(1999年)设f(x)是连续函数,F(x)是f(x)的原函数,则( )
选项
A、当f(x)是奇函数时,F(x)必是偶函数。
B、当f(x)是偶函数时,F(x)必是奇函数。
C、当f(x)是周期函数时,F(x)必是周期函数。
D、当f(x)是单调增函数时,F(x)必是单调增函数。
答案
A
解析
应用函数定义判定函数的奇偶性、周期性和单调性。
f(x)的原函数F(x)可以表示为F(x)=∫
0
x
f(t)dt+C,于是
当f(x)为奇函数时,f(一u)=一f(u),从而有
F(一x)=∫
0
x
f(u)du+C=∫
0
x
f(t)dt+C=F(x),
即F(x)为偶函数。故A为正确选项。
B,C,D可分别举反例如下:
f(x)=x
2
是偶函数,但其原函数
不是奇函数,可排除B;
f(x)=cos
2
x是周期函数,但其原函数
不是周期函数,可排除C;
f(x)=x在区间(一∞,+∞)内是单调增函数,但其原函数
在区间(一∞,+∞)内非单调递增函数,可排除D。
转载请注明原文地址:https://kaotiyun.com/show/jZX4777K
0
考研数学三
相关试题推荐
求二元函数z=f(x,y)=x2y(4一x一y)在直线x+y=6,x轴与y轴围成的闭区域D上的最大值与最小值.
设f(x)在[0,+∞)连续,且证明至少存在一点ξ∈(0,+∞),使得f(ξ)+ξ=0.
设y=y(x)是由方程y2+xy+x2+x=0所确定的满足y(一1)=1的隐函数,则
设①求作可逆矩阵P,使得(AP)TAP是对角矩阵.②k取什么值时A+kE正定?
一商家销售某种商品的价格满足关系P=7-0.2x(万元/单位),x为销售量,成本函数为C=3x+1(万元),其中x服从正态分布N(5p,1),每销售一单位商品,政府要征税t万元,求该商家获得最大期望利润时的销售量.
求yˊˊ-y=e|x|的通解.
设A为n阶矩阵,λ1和λ2是A的两个不同的特征值,χ1,χ2是分别属于λ1和λ2的特征向量.证明:χ1+χ2不是A的特征向量.
设a1=1,an+1+=0,证明:数列(an)收敛,并求
(2004年)设A,B为两个随机事件,且P(A)=,P(B|A)=,P(A|B)=,令求:(Ⅰ)二维随机变量(X,Y)的概率分布;(Ⅱ)X与Y的相关系数ρXY;(Ⅲ)Z=X2+Y2的概率分布。
[2010年]设某商品的收益函数为R(P),收益弹性为1+P3,其中P为价格,且R(1)=1,则R(P)=_________.
随机试题
患者,女,15岁。持续高热1周,近日伴腹痛,腹泻,体格检查:肝肋下2cm质软,脾肋下2cm,腹壁可见玫瑰疹,肥达反应“0”≥1:80.“H”≥1:60。首选抗生素是
根据需要,可以对环境做不同的分类。通常按环境的原理,可将环境分为()等几种。
保证合同约定保证人承担保证责任直至主债务本息还清时为止等类似内容的,视为约定不明,保证期间为主债务履行期届满之日起()。
下列关于借款费用的表述中,正确的有()。
根据保险法律制度的规定,下列有关保险合同成立时间的表述中,正确的是()。
被道教誉为“天下第九名山”,有“蜀道明珠”之称的是()。
耕耘:收获
在群体压力下,成员有可能放弃自己的意见而采取与大多数人一致的行为,这就是()。
利他行为:指人们出于自愿、不指望任何报酬的帮助他人的行为。下列属于利他行为的是()。
设是从总体X中取出的简单随机样本X1,X2,…,Xn的样本均值,则是μ的矩估计,如果()
最新回复
(
0
)