首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,…,αn—1,β1,β2均为n维实向量,α1,…,αn—1线性无关,且βj(j=1,2)与α1,…,αn—1均正交.证明:β1与β2线性相关.
设α1,…,αn—1,β1,β2均为n维实向量,α1,…,αn—1线性无关,且βj(j=1,2)与α1,…,αn—1均正交.证明:β1与β2线性相关.
admin
2016-04-11
29
问题
设α
1
,…,α
n—1
,β
1
,β
2
均为n维实向量,α
1
,…,α
n—1
线性无关,且β
j
(j=1,2)与α
1
,…,α
n—1
均正交.证明:β
1
与β
2
线性相关.
选项
答案
n+1个n维向量α
1
,…,α
n—1
,β
1
,β
2
,线性相关,故有不全为0的一组数k
1
,…,k
n—1
,k
n
,k
n+1
,使k
1
α
1
+…k
n—1
α
n—1
+k
n
β
1
+k
n+1
β
2
=0,且k
n
与k
n+1
不全为0(否则k
1
,…,k
n—1
不全为0,使k
1
α
1
+…k
n—1
α
n—1
=0,这与α
1
,…,α
n—1
线性无关矛盾),用k
n
β
1
+k
n+1
β
2
与上面等式两端作内积,得‖k
n
β
1
+k
n+1
β
2
‖
2
=0,→k
n
β
1
+k
n+1
β
2
=0.且因k
n
和k
n+1
不全为0,知β
1
与β
2
线性相关.
解析
转载请注明原文地址:https://kaotiyun.com/show/k8w4777K
0
考研数学一
相关试题推荐
设f(x)在[0,1]上二阶可导,且f(0)=f(1)=0,证明:存在ξ∈(0,1),使得
设f(x)在[a,b]上可导,F(x)=f(x)-x若F(x)在x=a处取得最小值,在x=b处取得最大值,则()
若函数y=f(x)有f’(x0)=1/2,则当△x→0时,该函数在x=x0点外的微分dy是().
函数的麦克劳林公式中x4项的系数是__________.
设n维列向量矩阵A=E一4ααT,其中E是n阶单位矩阵,若n维列向量β=(1,1,…,1)T,则向量Aβ的长度为
设z=z(x,y)是由f(y-x,yz)=0确定的,其中f对各个变量有连续的二阶偏导数,求
设A为四阶可逆方阵,将A第3列乘3倍再与第1列交换位置,得到矩阵B,则B-1A=__________.
四名乒乓球运动员——1,2,3,4参加单打比赛,在第一轮中,1与2比赛,3与4比赛.然后第一轮中的两名胜者相互比赛决出冠亚军,两名败者也相互比赛决出第三名和第四名.于是比赛的一种最终可能结果可以记作1324(表示1胜2,3胜4,然后1胜3,2胜4).设
商店收进甲厂生产的产品30箱,乙厂生产的同种产品20箱,甲厂产品每箱装100个,废品率为0.06,乙厂产品每箱120个,废品率为0.05.若将所有产品开箱混装,任取一个其为废品的概率
一串钥匙,共有10把,其中有4把能打开门,因开门者忘记哪些能打开门,便逐把试开,求下列事件的概率:第3把钥匙才打开门
随机试题
节气起源于我国黄河流域,将全年分为二十四等分。以下关于二十四节气的说法正确的是:
焦虑是一个人过于专注地思考一件事情导致的,那么,为了使这样的专注心理消除,我们必须要想办法分散自己的思维,等大脑忘记了你所焦虑的事情之后,再回过头来冷静对待事情。分散思维的办法有很多,可以通过行动去分散,也可以通过视觉分散,还可以通过语言来分散。各种分散办
“燕山雪花大如席”中的雪花形象属于()
患儿34周早产,生后6小时出现呼吸性呻吟,三凹症,鼻扇,紫绀,X线检查可见两肺透亮度降低,支气管充气征。该患儿可能患有
衍射光栅主极大公式(a+b)sinφ=±kλ,k=0,1,2…,在k=2的方向上第一条缝与第六条缝对应点发出的两条衍射光的光程差δ=()。
某工程时标网络图如下,下列选项正确的是()
社会是变化发展的,德育不能仅传授给学生固定的价值观点,要教会学生如何分析不同的道德价值,这反映的德育模式是()
(2011年真题)下列关于法与国家一般关系的表述,能够成立的是
下列关于μC/OS—II操作系统的描述中,错误的是()。
ChineseCalligraphyCalligraphy,thewritingofcharacters,isoneofthetraditionalfourartsandhasdevelopedovercentu
最新回复
(
0
)