首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:方阵A是正交矩阵的充分必要条件是|A|=±1,且若|A|=1,则它的每一个元素等于自己的代数余子式,若|A|=-1,则它的每个元素等于自己的代数余子式乘-1.
证明:方阵A是正交矩阵的充分必要条件是|A|=±1,且若|A|=1,则它的每一个元素等于自己的代数余子式,若|A|=-1,则它的每个元素等于自己的代数余子式乘-1.
admin
2019-01-23
27
问题
证明:方阵A是正交矩阵的充分必要条件是|A|=±1,且若|A|=1,则它的每一个元素等于自己的代数余子式,若|A|=-1,则它的每个元素等于自己的代数余子式乘-1.
选项
答案
必要性 A是正交矩阵[*]. 若|A|=1,则AA
*
=|A|E=E,而已知AA
T
=E,从而有A
T
=A
*
,即a
ij
=A
ij
; 若|A|=-1,则AA
*
=|A|E=-E,A(-A
*
)=E,而已知AA
T
=E,从而有-A
*
=A
T
,即a
ij
=A
ij
. 充分性 |A|=1且a
ij
=A
ij
,则A
*
=A
T
,AA
*
=AA
T
=|A|E=E,A是正交阵,|A|=-1,且a
ij
=-A
ij
时,-A
*
=A
T
,AA
*
=|A|E=-E,即AA
T
=E,A是正交阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/krM4777K
0
考研数学一
相关试题推荐
设y=y(x)在[0,+∞)内可导,且在x>0处的增量△y=y(x+△x)一y(x)满足△y(1+△y)=,其中当△x→0时α是△x的等价无穷小,又y(0)=2,求y(x).
设级数的部分和,则=______.
级数
设二维随机变量(X,Y)的联合分布为其中a,b,c为常数,且EXY=一0.1,P{X≤0|Y≥2}=,记Z=X+Y.求:(I)a,b,c之值;(Ⅱ)Z的概率分布;(Ⅲ)P{Z=X}与P{Z=Y}.
设随机变量X和Y的联合概率分布服从G={(x,y)|x2+y2≤r2}上的均匀分布,则下列服从相应区域上均匀分布的是
设F(x)是连续型随机变量X的分布函数,常数a>0,则[F(x+a)一F(x)]dx=______.
设A=(aij)n×n是非零矩阵,且|A|中每个元素aij与其代数余子式Aij相等.证明:|A|≠0.
已知3维列向量β不能由线性表出,试判断矩阵能否相似对角化?若能则求出可逆矩阵P使P-1AP=A.若不能则说明理由.
求与A=可交换的矩阵.
设向量组B:b1…,br能由向量组A:a1,…as线性表示为(b1…br)=(a1…,as)K,其中K为s×r矩阵,且向量组A线性无关证明向量组B线性无关的充分必要条件是矩阵K的秩r(K)=r.
随机试题
理想流体在同一流管中做稳定流动时,对于不同截面的流量是:
A.条件(1)充分,但条件(2)不充分B.条件(2)充分,但条件(1)不充分C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分D.条件(1)充分,条件(2)也充分E.条件(1)和条件(2)单独都不充分,条件(1)和条件(2)联
A.梗死灶呈节段性B.梗死易液化C.梗死灶呈锥形D.梗死灶呈地图状E.梗死灶呈化脓性脾梗死
男,45岁,肝炎病史10年,近2个月来感腹胀明显,心慌、气促,呼吸困难。查体:腹部膨隆,状如蛙腹,B超示大量腹水。其腹水发生的原因不包括
在战争、饥荒、瘟疫及疾病高发区的调查研究和实际考察属于
某市政府拟投资建一大型垃圾焚烧发电站工程项目。该项目除厂房及有关设施的土建工程外,还有全套进口垃圾焚烧发电设备及垃圾处理专业设备的安装工程。厂房范围内地质勘察资料反映地基地质条件复杂,地基处理采用钻孔灌注桩。招标单位委托某咨询公司进行全过程投资管理。该项目
()是指在中国境外注册、在香港上市但主要业务在中国内地或大部分股东权益来自中国内地的股票。
甲公司拟加盟乙快餐集团,乙集团对加盟企业采取不从零开始的加盟政策,将已运营2年以上、达到盈亏平衡条件的自营门店整体转让给符合条件的加盟商,加盟经营协议期限15年,加盟时一次性支付450万元加盟费,加盟期内,每年按年营业额的10%向乙集团支付特许经营权使用费
教师成某带领小班幼儿进行户外活动,东东在玩滑梯时突然从滑梯上摔伤。事后调取监控录像发现,事发时成某背对着幼儿活动区域。对东东所受伤害应承担赔偿责任的主体是()。(2017年下半年真题)
A、 B、 C、 D、 C
最新回复
(
0
)