设函数f(t)在[0,a]上连续,证明,其中区域Ω:x≤z≤y,x≤y≤a,0≤x≤a.

admin2022-07-21  39

问题 设函数f(t)在[0,a]上连续,证明,其中区域Ω:x≤z≤y,x≤y≤a,0≤x≤a.

选项

答案设函数f(x)的原函数为F(x)=∫0xf(t)dt.显然F(0)=0,dF(x)=f(x)dx.于是 [*]f(x)f(y)f(z)dv=∫0af(x)dx∫xaf(y)dy∫xyf(z)dz =∫0af(x)dx∫xaf(y)[F(y)-F(x)]dy=∫0af(x)dx[∫xaF(y)dF(y)-F(x)∫xadF(y) =∫0af(x)[[*]F2(y)-F(x)F(y)]|xadx=[*]∫0af(x)[F(a)-F(x)]2dx =-[*]∫0a[F(a)-F(x)]2d[F(a)-F(x)]=-[*][F(a)-F(x)]30a =[*]F3(a)=[*][∫0af(t)dt]3

解析
转载请注明原文地址:https://kaotiyun.com/show/lUf4777K
0

最新回复(0)