首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数y=y(x)由方程ylny一x+y=0确定,试判断曲线y=y(x)在点(1,1)附近的凹凸性。
设函数y=y(x)由方程ylny一x+y=0确定,试判断曲线y=y(x)在点(1,1)附近的凹凸性。
admin
2018-12-19
64
问题
设函数y=y(x)由方程ylny一x+y=0确定,试判断曲线y=y(x)在点(1,1)附近的凹凸性。
选项
答案
要判断曲线y=y(x)在点(1,1)附近的凹凸性,只需判断y’’(x)在点(1,1)附近的正负。 在方程ylny一x+y=0两边对x求导得 y’lny+y’一1+y’=0, 上式两边对x求导得 [*] 于是解得[*],显然(y’)
2
≥0,在点(1,1)附近,可选择一个合适的范围,如y>e
—2
,使得y(2+lny)>0,则在点(1,1)附近有y’’≤0,所以曲线y=y(x)在点(1,1)附近是凸的。
解析
转载请注明原文地址:https://kaotiyun.com/show/ljj4777K
0
考研数学二
相关试题推荐
设函数f(x)在x=1连续,且f(1)=1,则=________.
(1994年)如图2.9所示,设曲线方程为y=χ2+,梯形OABC的面积为D,曲边梯形OABC的面积为D1,点A的坐标为(a,0),a>0,证明:
(2014年)设函数u(χ,y)在有界闭区域D上连续,在D的内部具有2阶连续偏导数,且满足≠0及=0,则【】
(2013年)设二次型f(χ1,χ2,χ3)=2(a1χ1+a2χ2+a3χ3)+(b1χ1+b2χ2+b3χ3)2,记(Ⅰ)证明二次型f对应的矩阵为2ααT+ββT.(Ⅱ)若α,β正交且均为单位向量,证明f在正交变换下的标准形为
(2011年)设A为3阶实对称矩阵,A的秩为2,且(Ⅰ)求A的所有特征值与特征向量.(Ⅱ)求矩阵A.
(2003年)有一平底容器,其内侧壁是由曲线χ=φ(y)(y≥0)绕y轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2m.根据设计要求,当以3m3/min的速率向容器内注入液体时,液面的面积将以πm3/min的速率均匀扩大(假设注入液体前,容器内无液体
求方程=(1一y2)tanx的通解以及满足y(0)=2的特解.
求不定积分.
设f(x)∈C[a,b],在(a,b)内二阶可导,且f’’(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值f(A)=g(a),f(bb)=g(b),证明存在ξ∈(a,b),使得f’’(ξ)=g’’(ξ)。
随机试题
机体的内环境指的是
自然人甲与乙订立借款合同,其中约定甲将自己的一辆汽车作为担保物让与给乙。借款合同订立后,甲向乙交付了汽车并办理了车辆的登记过户手续。乙向甲提供了约定的50万元借款。一个月后,乙与丙公司签订买卖合同,将该汽车卖给对前述事实不知情的丙公司并实际交付给
具有择时能力的基金经理一般在熊市时降低现金头寸或提高基金组合的β值。()
金融制度创新使商业银行与投资银行业务领域的界限()。
锌是人体必需的微量元素,被称为“生命之花”,很多家长开始意识到锌对孩子成长的重要性,热衷于给孩子补锌。殊不知,人体需要的锌并不多,补锌过量会造成严重危害。这说明()。
在著名的优质麦产区山东省兖州市,国际粮商与改制后的基层粮管所合作,利用其收储网络大量收购小麦、玉米等粮源,形成具有一定规模的收储网络。在不断复制这种模式的同时,在国内企业已经进驻的地方,国际粮商开设面粉加工企业,利用掌握的优质粮源以及低价策略挤压国内企业生
Formanypeopletoday,readingisnolongerrelaxation.Tokeepuptheirwork,theymustreadletters,reports,tradepublicatio
DothefollowingstatementsagreewiththeinformationgiveninReadingPassage1?Inboxes10-13onyouranswersheet,writeTR
Thefineneedlesareused______.Whyaresometattooistscalled"responsible"?
RaisingWiseConsumersAlmostanyonewithaprofitmotiveismarketingtoinnocents.Helpyourkidsunderstandit’sOKnott
最新回复
(
0
)