首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有齐次线性方程组AX=0和BX=0,其中A,B均为m×n矩阵,现有四个命题: ①若AX=0的解均是BX=0的解,则秩(A)≥秩(B); ②若秩(A)≥秩(B),则AX=0的解均是BX=0的解; ③若AX=0与BX=0同解,则秩(A
设有齐次线性方程组AX=0和BX=0,其中A,B均为m×n矩阵,现有四个命题: ①若AX=0的解均是BX=0的解,则秩(A)≥秩(B); ②若秩(A)≥秩(B),则AX=0的解均是BX=0的解; ③若AX=0与BX=0同解,则秩(A
admin
2019-05-08
90
问题
设有齐次线性方程组AX=0和BX=0,其中A,B均为m×n矩阵,现有四个命题:
①若AX=0的解均是BX=0的解,则秩(A)≥秩(B);
②若秩(A)≥秩(B),则AX=0的解均是BX=0的解;
③若AX=0与BX=0同解,则秩(A)=秩(B);
④若秩(A)=秩(B),则AX=0与BX=0同解.
那么,以上命题中正确的是( ).
选项
A、①②
B、①③
C、②④
D、③④
答案
B
解析
解一 由命题2.4.6.2知命题③正确.又命题①也正确.这是因为AX=0的解均是BX=0的解,则AX=0的基础解系是BX=0的基础解系的一部分,因此AX=0的基础解系所含向量个数小于等于BX=0的基础解系所含向量的个数,即n-秩(A)≤n-秩(B),从而秩(A)≥秩(B).
解二 用排错法求之.取
则易求得AX=0的通解为c
1
[0,0,1]
T
=[0,0,c
1
]
T
,BX=0的通解为
c
2
[1,0,0]
T
+c
3
[0,1,0]
T
=[c
2
,c
3
,0]
T
,其中c
1
,c
2
,c
3
为任意常数.
虽然秩(A)=2>秩(B)=1,但AX=0的解[0,0,c
1
]
T
不都是BX=0的解[c
2
,c
3
,0]
T
,故命题②错误.
若取
则易得AX=0的通解为k
1
[0,1]
T
=[0,k
1
]
T
,k
1
为任意常数;BX=0的通解为k
2
[1,0]
T
=[k
2
,0]
T
,k
2
为任意常数.虽然秩(A)=秩(B)=1,但AX=0与BX=0的解不相同,即不同解.命题④错误.
下面证命题③正确.事实上,由命题①正确得秩(A)≥秩(B).再由AX=0与ABX=0同解知,BX=0的解均是AX=0的解,则秩(B)≥秩(A),于是秩(A)=秩(B),命题③正确.仅(B)入选.
注:命题2.4.6.2 AX=0和BX=0同解的充要条件是其基础解系相同,必要条件是秩(A)=秩(B).
转载请注明原文地址:https://kaotiyun.com/show/lsJ4777K
0
考研数学三
相关试题推荐
证明:当x>0时,ln(1+.
求幂级数的收敛域,并求其和函数.
求幂级数n(n+1)xn的和函数.
已知连续型随机变量X的概率密度为又知E(X)=0,求a,b的值,并写出分布函数F(x)。
如果用X,Y分别表示将一枚硬币连掷8次正反面出现的次数,则t的一元二次方程t2+Xt+Y=0有重根的概率是________。
已知随机变量X的概率密度(Ⅰ)求分布函数F(x)。(Ⅱ)若令Y=F(x),求Y的分布函数FY(y)。
设f(x)在[a,b]上连续,且f’’(x)>0,对任意的x1,x2∈[a,b]及0<λ<1,证明:f[λx1+(1-λ)x2]≤λf(x1)+(1-λ)f(x2).
设总体X在区间(0,θ)内服从均匀分布,X1,X2,X3是来自总体的简单随机样本.证明:都是参数θ的无偏估计量,试比较其有效性.
下列命题不正确的是().
求函数f(x)=ln(1-x-2x2)的幂级数,并求出该幂级数的收敛域.
随机试题
A.胸骨左缘B.胸骨右缘C.心尖内侧D.心前区听诊开瓣音最清楚的部位是
某猪场2岁种公猪,精神沉郁,步态强拘,拱背,腰部触诊敏感,常做排尿姿势。尿检可见红细胞、白细胞、盐类结晶、肾上皮细胞。该病可能的诊断是()
A.表寒里热证B.表热里寒证C.上寒下热证D.上热下寒证E.真热假寒证下利清谷,小便清长,舌淡苔白,面赤口渴多见于
总监理工程师负责项目监理机构内所有监理人员利益的分配。这表明,总监理工程师是项目监理的()。
关于混凝土或抹灰基层雨期涂刷涂料的基层含水率说法,正确的是()。
会计机构和会计人员应当按照国家统一的会计制度的规定对原始凭证进行认真审核,对记载不准确、不完整的原始凭证()。
鲁迅在上海期间的创作主要是()文体。
计算机系统中,【】通常用8位二进制组成,可代表一个数字、一个字母或一个特殊符号。
关于因特网的域名系统,以下哪种说法是错误的?______。
BlowingHotandColdClimatechangemaybeslowanduncertain,butthatisnoexcuseforinaction.Onereasonwhyuncertaint
最新回复
(
0
)