首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,2]上连续,在(0,2)内二阶可导,且f(x)dx=f(2),试证:存在一点ξ∈(0,2),使得f"(ξ)=0.
设f(x)在[0,2]上连续,在(0,2)内二阶可导,且f(x)dx=f(2),试证:存在一点ξ∈(0,2),使得f"(ξ)=0.
admin
2017-07-26
29
问题
设f(x)在[0,2]上连续,在(0,2)内二阶可导,且
f(x)dx=f(2),试证:存在一点ξ∈(0,2),使得f"(ξ)=0.
选项
答案
[*] 在[a,2]上f(x)满足洛尔定理的全部条件,由洛尔定理,存在一点b∈(a,2),使得f’(b)=0,又f’(x)在[a,b]上满足洛尔定理的全部条件,由洛尔定理,存在点ξ∈(a,b)[*](0,2),使得f"(ξ)=0.
解析
要证f"(ξ)=0,对f(x)可用两次洛尔定理来证明.用两次洛尔定理的关键是在[0,2]内构造使得f(a)=f(2)的区间和使f’(b)=f’(c)的区间[a,2]与[b,c].[a,2]可由积分中值定理得到,[b,c]可由已知极限和洛尔定理获得.
转载请注明原文地址:https://kaotiyun.com/show/luH4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 D
3
玻璃杯成箱出售,每箱20只,假设各箱含0、1、2只残次品的概率分别为0.8、0.1和0.1.顾客欲购一箱玻璃杯,在购买时售货员随意取一箱,而顾客随机察看该箱中4只玻璃杯,若无残次品,则买下该箱玻璃杯,否则退回.试求:(1)顾客买下该箱的概率α;
函数f(μ,ν)由关系式f[xg(y),y]=x+g(y)确定,其中函数g(y)可微,且g(y)≠0,则=_____________.
设A是n阶反对称矩阵,证明:如果λ是A的特征值,那么一λ也必是A的特征值.
向量组a1,a2,…,as线性无关的充分条件是().
设f(x)连续,(A为常数),求φ’(x)并讨论φ’(x)在x=0处的连续性.
设函数f(x)在[a,b]上满足a≤f(x)≤b,|fˊ(x)|≤q<1,令un=f(un-1),n=1,2,3,…,uo∈[a,b],证明:
设f(x)在[0,1]上连续,(0,1)内可导,且f(0).f(1)>0,f(1)+∫01f(x)dx=0.试证:至少存在一点ξ∈(0,1),使f’(ξ)=ξf(ξ).
试证明:曲线恰有三个拐点,且位于同一条直线上.
随机试题
子痫的叙述正确的是()
女性,70岁。主诉轻微骨痛,劳动后加重,被诊断为骨质疏松。目前对患者生活影响最大的危险因素是()。
施工成本计划的编制以( )为基础,关键是确定目标成本。
以下方法反映指标重要性量的差别准确程度的关系为()。
流动性风险主要源于银行自身资产负债结构的错配,突发性事件及信用、市场、操作和声誉等风险之间的转换,或源于市场流动性收紧未能以公允价值变现或质押资产以获得资金。()
A国是亚洲经济发展最快的国家。A国的B省在过去30年间大力发展各类制造及加工业务,成为A国南方沿海经济第一大省。随着B省经济的快速发展,省内几个主要城市均建造了民用机场。近几年,A国政府开始大力推动铁路网络建设,目标是覆盖全国各主要省市。B省亦开始建设通往
下列经济业务所产生的现金流量中,属于“经营活动产生的现金流量”的是()。
从立法、执法、司法的角度,论述权力制约的法治原则。
第八次中国一东盟经贸部长会议于2009年8月15日在泰国首都曼谷召开,双方共同签署了中国一东盟自贸区《投资协议》,标志着中国与东盟历时7年之久的自贸区主要谈判任务已经完成,该协议的重要意义在于()
下列4个选项中,正确的一项是
最新回复
(
0
)