首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,2]上连续,在(0,2)内二阶可导,且f(x)dx=f(2),试证:存在一点ξ∈(0,2),使得f"(ξ)=0.
设f(x)在[0,2]上连续,在(0,2)内二阶可导,且f(x)dx=f(2),试证:存在一点ξ∈(0,2),使得f"(ξ)=0.
admin
2017-07-26
62
问题
设f(x)在[0,2]上连续,在(0,2)内二阶可导,且
f(x)dx=f(2),试证:存在一点ξ∈(0,2),使得f"(ξ)=0.
选项
答案
[*] 在[a,2]上f(x)满足洛尔定理的全部条件,由洛尔定理,存在一点b∈(a,2),使得f’(b)=0,又f’(x)在[a,b]上满足洛尔定理的全部条件,由洛尔定理,存在点ξ∈(a,b)[*](0,2),使得f"(ξ)=0.
解析
要证f"(ξ)=0,对f(x)可用两次洛尔定理来证明.用两次洛尔定理的关键是在[0,2]内构造使得f(a)=f(2)的区间和使f’(b)=f’(c)的区间[a,2]与[b,c].[a,2]可由积分中值定理得到,[b,c]可由已知极限和洛尔定理获得.
转载请注明原文地址:https://kaotiyun.com/show/luH4777K
0
考研数学三
相关试题推荐
函数f(μ,ν)由关系式f[xg(y),y]=x+g(y)确定,其中函数g(y)可微,且g(y)≠0,则=_____________.
设中与A等价的矩阵有()个.
向量组a1,a2,…,as线性无关的充分条件是().
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1,试证:对任意正数a,b,在(0,1)内存在不同的两点ξ,η,使=a+b.
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1),证明:存在ξ,η∈(0,1),使得f’(ξ)+f’(η)=0.
设X为随机变量,E|X|r(r>0)存在,试证明:对任意ε>0有
设f(x)在[0,1]上连续,(0,1)内可导,且f(0).f(1)>0,f(1)+∫01f(x)dx=0.试证:至少存在一点ξ∈(0,1),使f’(ξ)=ξf(ξ).
设f(x)在[a,b]上连续,a<x1<x2<…<xn<b.试证:在[a,b]内存在ξ,使得
设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.试证:必存在ξ∈(0,3),使f’(ξ)=0.
随机试题
论述我国海洋污染防治的监督管理体制。
患者,女,16岁。枕部着地,昏迷10分钟后清醒,并自己回到家中,其后出现头痛,并呈逐渐加重伴呕吐,半小时后不省人事,急送医院。查体:BP130/90mmHg,P65次/分,R15次/分。浅昏迷,右枕部头皮挫伤,左侧瞳孔5mm,对光反应消失,右侧
待有足够的资料后,可进行规划方案的制定,不属其步骤的是()。
人程监理的工作性质有()的特点。
Thecostofround-tripairtransportationisincluded________thenine-daycruisepackage.
在某堂植物课教学中.王老师讲授“果实”概念时即选用可食用的(如橘子),又选用不可食用的(如棉籽),这样有利于学生准确掌握果实概念。运用了()。
Itusedtobesostraightforward(直接的).Ateamofresearchersworkingtogetherinthelaboratorywouldsubmittheresultsofthe
OneafternoonIwassittingatmyfavoritetableinarestaurant,waitingforthefoodIhadordered.SuddenlyI【36】thatamansit
Withthepicturesand______.
Foxesandfarmershavenevergotonwell.Thesesmalldog-likeanimalshavelongbeenaccusedofkillingfarmanimals.Theyare
最新回复
(
0
)