首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,2]上连续,在(0,2)内二阶可导,且f(x)dx=f(2),试证:存在一点ξ∈(0,2),使得f"(ξ)=0.
设f(x)在[0,2]上连续,在(0,2)内二阶可导,且f(x)dx=f(2),试证:存在一点ξ∈(0,2),使得f"(ξ)=0.
admin
2017-07-26
26
问题
设f(x)在[0,2]上连续,在(0,2)内二阶可导,且
f(x)dx=f(2),试证:存在一点ξ∈(0,2),使得f"(ξ)=0.
选项
答案
[*] 在[a,2]上f(x)满足洛尔定理的全部条件,由洛尔定理,存在一点b∈(a,2),使得f’(b)=0,又f’(x)在[a,b]上满足洛尔定理的全部条件,由洛尔定理,存在点ξ∈(a,b)[*](0,2),使得f"(ξ)=0.
解析
要证f"(ξ)=0,对f(x)可用两次洛尔定理来证明.用两次洛尔定理的关键是在[0,2]内构造使得f(a)=f(2)的区间和使f’(b)=f’(c)的区间[a,2]与[b,c].[a,2]可由积分中值定理得到,[b,c]可由已知极限和洛尔定理获得.
转载请注明原文地址:https://kaotiyun.com/show/luH4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 D
已知实二次型f(x1,x2,x3)=a(x11+x22+x32)+4x1x2+4x1x3+4x2x3经正交变换x=Py可化成标准形f=6y12,则a=_______.
证明:方程x=a+bsinx(其中a>0,b>0)至少有一个正根,并且它不超过a+b.
设A为n阶矩阵,对于齐次线性方程(I)An=0和(Ⅱ)An+1x=0,则必有
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是().
选取适当的变换,证明下列等式:
确定常数a,使向量组α1=(1,1,a)T,α2=(1,n,1)T,α3=(a,1,1)T可由向量组β1=(1,l,a)T,β2=(-2,a,4)T,β3=(-2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示.
设b为常数.设L与l从x=1延伸到x→+∞之间的图形的面积A为有限值,求b及A的值.
设g(x)二阶可导,且f(x)=求常数a使得f(x)在x=0处连续;
设函数f(x)在[一2,2]上二阶可导,且|f(x)|≤1,又f(0)+[f2(0)]2=4.试证:在(一2,2)内至少存在一点ξ,使得f"(ξ)+f"(ξ)=0.
随机试题
描述催化剂特征不正确的是()。
常用以诊断肝病的腧穴是
具有扩散瞳孔作用的药物是
下列关于我国商业银行面临的市场风险,说法不正确的有()。
《党章》规定,党组织讨论决定问题,必须执行()。
丑
斯大林在《论辩证唯物主义和历史唯物主义》一书中首次明确提出一切以条件、地点和时间为转移的观点。这表明事物之间的联系具有
有以下程序:#include<stdlib.h>main(){char*p,*q;p=(char*)malloc(sizeof(char)*20);q=p;scanf("%s%s",p,q);
Thereisnothinginscience(stating)thatitisgoodtoattempttosavehumanlives.Savinghumanlives(seems)tobea(genera
Fromthearticlewecaninduce’InallofAmericanhistory,immigrantswhohavecometotheU.S.arenot______.
最新回复
(
0
)