首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
考虑二元函数f(x,y)的下面4条性质: ①f(x,y)在点(x0,y0)处连续. ②f(x,y)在点(x0,y0)处的两个偏导数连续. ③f(x,y)在点(x0,y0)处可微. ④f(x,y)在点(x0,y0)处的两个偏导
考虑二元函数f(x,y)的下面4条性质: ①f(x,y)在点(x0,y0)处连续. ②f(x,y)在点(x0,y0)处的两个偏导数连续. ③f(x,y)在点(x0,y0)处可微. ④f(x,y)在点(x0,y0)处的两个偏导
admin
2019-08-27
62
问题
考虑二元函数f(x,y)的下面4条性质:
①f(x,y)在点(x
0
,y
0
)处连续.
②f(x,y)在点(x
0
,y
0
)处的两个偏导数连续.
③f(x,y)在点(x
0
,y
0
)处可微.
④f(x,y)在点(x
0
,y
0
)处的两个偏导数存在.
若用“P
Q”表示可由性质P推出性质Q,则有( ).
选项
A、
B、
C、
D、
答案
A
解析
【思路探索】由二元函数在一点处的连续性、可偏导性、可微性及偏导数的连续之间的关系便可得结论.
若f(x,y)在点(x
0
,y
0
)处的两个偏导数连续,则f(x,y)在(x
0
,y
0
)处可微,而可微又必连续,因此有:
,故(A)选项正确.
本题的典型错误是选(C),导致错误的原因是:对于二元函数f(x,y)而言,在(x
0
,y
0
)处由偏导数均存在推不出f(x,y)在(x
0
,y
0
)连续的结论,即偏导数存在与连续之间没有必然的联系,这一点与一元函数不同.如函数
fˊ
y
(0,0)=0,但f(x,y)在(0,0)不连续.
故应选(A).
转载请注明原文地址:https://kaotiyun.com/show/m1A4777K
0
考研数学二
相关试题推荐
设A3×3=(α1,α2,α3),方程组Ax=β有通解kξ﹢η=(1,2,-3)T﹢(2,-1,1)T,其中k为任意常数.证明:(I)方程组(α1,α2)x=β有唯一解,并求该解;(Ⅱ)方程组(α1﹢α2﹢α3﹢β,α1,α2,α3)x-β有无穷多解
设f(χ)在[0,2]上连续,在(0,2)内二阶可导,且=0,又f(2)=2f(χ)dχ,证明:存在ξ∈(0,2),使得f′(ξ)+f〞(ξ)=0.
[*]由密度函数求分布函数可以用积分法,但当涉及分段密度函数时一定要分清需要积分的区域,故一般先画个草图(图3-2),标出非零的密度函数,然后分不同情况观察(X,Y)落在给定的(x,y)左下方平面区域内的概率,从而计算F(x,y)的值。在计算随机变量满足某
求函数f(x)=x2ln(1+x)在x=0处的n阶导数。
设y=f(x)在(1,1)邻域有连续二阶导数,曲线y=f(x)在点P(1,1)处的曲率圆方程为x2+y2=2,则f″(1)=_________.
已知y1*(x)=xe—x+e—2x,y2*(x)=xe—x+xe—2x,y3*(x)=xe—x+e—2x+xe—2x是某二阶线性常系数微分方程y″+py′+qy=f(x)的三个特解.求这个方程和它的通解.
下列积分可直接使用牛顿—莱布尼茨公式的是[].
设g(x)在x=0处二阶可导,且g(0)=g’(0)=0,设则f(x)在x=0处()
设u=f(χ,y,z)有连续的一阶偏导数,又函数y=y(χ)及z=z(χ)分别由下列两式确定eχy-χy=2,eχ=,求=_______.
设A,B为同阶方阵。当A,B均为实对称矩阵时,证明第一小题的逆命题成立。
随机试题
在考生文件夹下,“samp1.mdb”数据库文件中已建立表对象“tEmployee”。试按以下操作要求,完成表的编辑:(1)设置“编号”字段为主键。(2)设置“年龄”字段的“有效性规则”属性为:大于等于17且小于等于55。(3)设置“聘用时间”字段的
人力资源的需求量主要是根据职务的()来确定。
善去脾胃大肠湿热,为治湿热泻痢要药的是()
( )是从施工成本管理的组织方面采取的措施。
出现下列情况时,需要修订基本标准成本的有()。
根据企业破产法的规定,下列情形中,债权人可以行使抵销权的是()。
企业依照法律、行政法规有关规定提取的用于环境保护、生态恢复等方面的专项资金,准予在计算应纳税所得额时扣除。()
下列关于职工代表大会制度的说法错误的是()。[2014年11月、2011年11月、2010年5月三级真题]
简述艾森克的“三因素人格模型”理论。
通过宪法修正案对宪法部分内容修改和完善,是宪法修改的一种方式。我国采用这一方式开始于()(2018年—综一第22题)
最新回复
(
0
)