首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
考虑二元函数f(x,y)的下面4条性质: ①f(x,y)在点(x0,y0)处连续. ②f(x,y)在点(x0,y0)处的两个偏导数连续. ③f(x,y)在点(x0,y0)处可微. ④f(x,y)在点(x0,y0)处的两个偏导
考虑二元函数f(x,y)的下面4条性质: ①f(x,y)在点(x0,y0)处连续. ②f(x,y)在点(x0,y0)处的两个偏导数连续. ③f(x,y)在点(x0,y0)处可微. ④f(x,y)在点(x0,y0)处的两个偏导
admin
2019-08-27
61
问题
考虑二元函数f(x,y)的下面4条性质:
①f(x,y)在点(x
0
,y
0
)处连续.
②f(x,y)在点(x
0
,y
0
)处的两个偏导数连续.
③f(x,y)在点(x
0
,y
0
)处可微.
④f(x,y)在点(x
0
,y
0
)处的两个偏导数存在.
若用“P
Q”表示可由性质P推出性质Q,则有( ).
选项
A、
B、
C、
D、
答案
A
解析
【思路探索】由二元函数在一点处的连续性、可偏导性、可微性及偏导数的连续之间的关系便可得结论.
若f(x,y)在点(x
0
,y
0
)处的两个偏导数连续,则f(x,y)在(x
0
,y
0
)处可微,而可微又必连续,因此有:
,故(A)选项正确.
本题的典型错误是选(C),导致错误的原因是:对于二元函数f(x,y)而言,在(x
0
,y
0
)处由偏导数均存在推不出f(x,y)在(x
0
,y
0
)连续的结论,即偏导数存在与连续之间没有必然的联系,这一点与一元函数不同.如函数
fˊ
y
(0,0)=0,但f(x,y)在(0,0)不连续.
故应选(A).
转载请注明原文地址:https://kaotiyun.com/show/m1A4777K
0
考研数学二
相关试题推荐
两个相同直径为2R>0的圆柱体,它们的中心轴垂直相交,则此两圆柱体公共部分的体积为()(所画出的图形的体积是要求的,如图)
求满足微分方程yy”﹢1=(y’),及初始条件y(0)=1,y’(0)=的特解,并验证你所得到的解的确满足上述方程及所给初始条件.
设un=_______.
设f(χ)在[0,2]上连续,在(0,2)内二阶可导,且=0,又f(2)=2f(χ)dχ,证明:存在ξ∈(0,2),使得f′(ξ)+f〞(ξ)=0.
设二二次型f(x1,x2,x3)=ax12+ax22+(a—1)x32+2x1x3—2x2x3。若二次型f的规范形为y12+y22,求a的值。
设f(x)=,x≥0,判断f(x)是否单调,是否有界?
若函数f(x)在[0,1]上连续,在(0,1)内具有二阶导数,f(0)=f(1)=0,f″(x)<0,且f(x)在[0,1]上的最大值为M.求证:f(x)>0(x∈(0,1)).
设α1,α2,α3,α4都是n维向量.判断下列命题是否成立.①如果α1,α2,α3线性无关,α4不能用α1,α2,α3线性表示,则α1,α2,α3,α4线性无关.②如果α1,α2线性无关,α3,α4都不能用α1,α2线性表示,则α1,α
设矩阵Am×n的秩r(A)=r([A|b])=m<n,则下列说法错误的是()
求函数的导数:y=ef(x).f(ex),其中f(x)具有一阶导数.
随机试题
Whenhethoughtofthepast,mygrandfatherwouldsometimesshowusphotographsofhimselfatschool.Theywerebrownandfaded,
A.有头疽B.附骨疽C.锁喉痈D.瘰疬E.以上都不是
特殊人群高血压的治疗A、α-受体阻断剂(α-RB)B、β-受体阻断剂(β-RB)C、噻嗪类利尿药D、醛固酮受体拮抗剂E、血管紧张素转换酶抑制剂(ACEI)脑血管病病人宜选用的药物是
下列各项中,有关汇票与支票相互区别的表述中正确的有()。
健康保险所承保的疾病风险的特点有()
王某按照某银行支行的业务印章自行制作了一个业务印章,并印制了空白存单,然后制作了一张50万元的银行存单,并以此从另一家银行获得抵押贷款50万元。根据《刑法》的有关规定,有关王某的行为,下列说法正确的有()。
立国之初,明朝统治者就将发展教育事业放在重要地位,于是确立了“______”的文教政策。
堆是一种数据结构,(36)是堆。
Weneedonehundredmoresignaturesbeforewetakethe______tothegovernor.
TheriseandfallofvacationsTheriseTopvacationtime:AugustPaidvacationisa【D1】______.Theappearanceoftheword"vaca
最新回复
(
0
)