首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:二次型f(x)=xTAx在||x||=1时的最大值为矩阵A的最大特征值。
证明:二次型f(x)=xTAx在||x||=1时的最大值为矩阵A的最大特征值。
admin
2017-01-21
52
问题
证明:二次型f(x)=x
T
Ax在||x||=1时的最大值为矩阵A的最大特征值。
选项
答案
A为实对称矩阵,则存在正交矩阵Q,使得 QAQ
—1
=diag(λ
1
,λ
2
,…,λ
n
)=Λ,其中λ
1
,λ
2
,…,λ
n
为A的特征值,不妨设λ
1
最大。 作正交变换y=Qx,即x=Q
—1
y=Q
T
y,则 f=x
T
Ax=y
T
QAQ
T
y=y
T
Ay=λ
1
y
1
2
+ λ
2
y
2
2
+…+λ
n
y
n
2
, 因为y=Qx,所以当||x||=1时,有 ||x||=x
T
x=y
T
QQ
T
y=||y ||
2
=1, 即 y
1
2
+y
2
2
+…+y
n
2
=1 。 因此 f=λ
1
y
1
2
+λ
2
y
2
2
+…+λ
n
y
n
2
≤λ
1
(y
1
2
+y
2
2
+…+y
n
2
)=λ
1
。 又当y
1
=1,y
2
=y
3
3=…=y
n
=0时,f=λ
1
,所以f
max
=λ
1
。
解析
转载请注明原文地址:https://kaotiyun.com/show/mLH4777K
0
考研数学三
相关试题推荐
已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是对应齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b的通解必是
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.证明B可逆;
设α,β为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置.证明:若α,β线性相关,则秩r(A)
设F(x)=F(x)g(x),其中函数f(x),g(x)在(-∞,+∞)内满足以下条件:f’(x)=g(x),g’(x)=f(x)且f(0)=0,f(x)+g(x)=2ex.求F(x)所满足的一阶微分方程;
已知二次型f(x1,x2,x3)=x12+ax22+x32+2x1x2-2ax1x3-2x2x3的正、负惯性指数都是1,则a=_________.
设二次型f(x1,x2,x3)=XTAX=ax12+2x22-2x32+2bx1x3(b>0),其中二次型的矩阵A的特征值之和为1,特征值之积为-12.利用正交变换将二次型f化为标准形,并写出所用的正交变换和对应的正交矩阵.
证明级数在(0,+∞)上收敛且一致收敛.
假设:(1)函数y=f(x)(0≤x<+∞)满足条件f(0)=0和0≤f(x)≤ex-1;(2)平行于y轴的动直线MN与曲线y=f(x)和y=ex-1分别相交于点P1和P2;(3)曲线y=f(x)、直线MN与x轴所围封闭图形的面积S恒等于线段P1P2的
判断下列级数的收敛性:
非齐次线性方程组Ax=b中未知量个数为n,方程个数为m,系数矩阵A的秩为r,则
随机试题
女孩,8岁,半月前有发热,体温38.6℃~39.8℃,稀水便,7~8次/H,一周后自愈。近2天感疲乏、头晕,晕厥一次。入院查面色苍白,脉缓而规则,血压65/40mmHg,心界扩大,心率50次/分,有大炮音。该患儿ECG检查的结果最有可能是
下列哪一项不是小肠吸收功能试验?
A.引吐法B.泻下法C.排出法D.油疗法E.平息法将腹内疾病尤其是赤巴病排出体外常用的方法是
一次支付复利系数可表示为( )。
建筑安装工程施工中生产工人的流动施工津贴属于()。【2007年考试真题】
2017年1月1日,A公司以每股10元的价格购入B上市公司(以下简称“B公司”)股票100万股,并由此持有B公司2%股权。投资前A公司与B公司不存在关联方关系。A公司将对B公司的该项投资作为以公允价值计量且其变动计入当期损益的金融资产核算。2018年1月1
递延年金具有如下特点()。
深化党和国家机构改革,是贯彻落实党的十九大决策部署的一个重要举措,是全面深化改革的一个重大动作,是推进国家治理体系和治理能力现代化的一次集中行动。短短一年多时间,十九届三中全会部署的改革任务总体完成,取得一系列重要理论成果、制度成果、实践成果。继续深化党和
会社に
InChina,whenyoumeetafriendinthestreet,youwouldsay,"Whereareyougoing?"or"Haveyoueatenyet?"ButinEnglandpeopled
最新回复
(
0
)