首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(04年)设f(χ),g(χ)在[a,b]上连续,且满足 ∫aχf(t) dt≥∫aχg(t)dt,χ∈[a,b];∫abf(t)dt=∫abg(t)dt 证明:∫abχf(χ)dχ≤∫abχg(χ)dχ
(04年)设f(χ),g(χ)在[a,b]上连续,且满足 ∫aχf(t) dt≥∫aχg(t)dt,χ∈[a,b];∫abf(t)dt=∫abg(t)dt 证明:∫abχf(χ)dχ≤∫abχg(χ)dχ
admin
2021-01-25
38
问题
(04年)设f(χ),g(χ)在[a,b]上连续,且满足
∫
a
χ
f(t) dt≥∫
a
χ
g(t)dt,χ∈[a,b];∫
a
b
f(t)dt=∫
a
b
g(t)dt
证明:∫
a
b
χf(χ)dχ≤∫
a
b
χg(χ)dχ
选项
答案
令F(χ)=f(χ)=(χ),G(χ)=∫
a
χ
F(t)dt, 由题设知 G(χ)≥0,χ∈[a,b], G(a)=G(b)=0,G′(χ)=F(χ). 从而 ∫
a
b
χF(χ)dχ=∫
a
b
χdG(χ)=χG(χ)|
a
b
-∫
a
b
G(χ)dχ =-∫
a
b
G(χ)dχ. 由于G(χ)≥0,χ∈[a,b],故有 -∫
a
b
G(χ)dχ≤0, 即∫
a
b
F(χ)dχ≤0. 因此∫
a
b
χf(χ)dχ≤∫
a
b
χg(χ)dχ.
解析
转载请注明原文地址:https://kaotiyun.com/show/mMx4777K
0
考研数学三
相关试题推荐
设f(x)有一个原函数=________.
设二维随机变量(X,Y)的分布函数为φ(2x+1)φ(2y一1),其中φ(x)为标准正态分布函数,则(X,Y)~N(_______).
设离散型随机变量X的概率函数为P{X=i}=pi+1,i=0,1,则p=___________.
一批产品共有10个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为________.
若4阶矩阵A与B相似,矩阵A的特征值为1/2,1/3,1/4,1/5,则行列式|B-1-E|=_________.
设a>0,f(x)=g(x)=而D表示整个平面,则I=f(x)-g(y-x)dxdy=______.
设3阶矩阵A的特征值为2,一2,1,B=A2一A+E,其中E为3阶单位矩阵,则行列式|B|=________。
设A=(α1,α2,α3,α4)为四阶方阵,且α1,α2,α3,α4为非零向量组,设AX=0的一个基础解系为(1,0,﹣4,0)T,则方程组A*X=0的基础解系为().
[2017年]若函数在x=0处连续,则().
(2017年)设a0=1,a1=0,(nan+an-1),(n=1,2,…),S(x)为幂级数的和函数。(I)证明幂级数的收敛半径不小于1;(Ⅱ)证明(1一x)S’(x)一xS(x)=0(x∈(一1,1)),并求S(x)的表达式。
随机试题
拌制钢纤维混凝土的正确投料顺序是()。
人类社会发展的基本动力是()
女,28岁。平时月经规则,现停经60d,阴道流血10d。妇科检查:子宫如妊娠3个月大,软,无压痛,双侧附件区均触及5cm囊性包块,壁薄,活动好,无压痛。血HCG增高明显。最可能的诊断是
每张中成药处方可以开具的药品种类最多是
下列关于基金年度报告的说法,正确的是()。
以税收负担的分配是否公平为标准划分中央与地方收入的原因是()。
下列各项政策措施中,属于财政政策手段的是()。
莫大伟到吉安公司上班的第一天,就被公司职工自由散漫的表现所震惊,莫大伟由此得出结论:吉安公司是一个管理失效的公司,吉安公司的员工都缺乏工作积极性和责任心。以下哪项为真,最能削弱上述结论?
[*]
Whatarethespeakersdiscussing?
最新回复
(
0
)