首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为实对称矩阵,且A的特征值都大于零.证明:A为正定矩阵.
设A为实对称矩阵,且A的特征值都大于零.证明:A为正定矩阵.
admin
2018-01-23
35
问题
设A为实对称矩阵,且A的特征值都大于零.证明:A为正定矩阵.
选项
答案
A所对应的二次型为f=X
T
AX, 因为A是实对称矩阵,所以存在正交变换X=QY,使得 f=X
T
AX[*]λ
1
y
1
2
+λ
2
y
2
2
+…+λ
n
y
n
2
,其中λ
i
>0(i=1,2,…,n), 对任意的X≠O,因为X=Qy,所以Y=Q
T
X≠0, 于是f=λ
1
y
1
2
+λ
2
y
2
2
+…+λ
n
y
n
2
>0,即对任意的X≠0有X
T
AX>0,所以X
T
AX为正 定二次型,故A为正定矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/mNX4777K
0
考研数学三
相关试题推荐
设α为四维列向量,αT为α的转置,若则αTα=().
设α1,α2,α3,α4为四维列向量组,且α1,α2,α3线性无关,α4=α1+α2+2α3.已知方程组[α1一α2,α2+α3,一α1+aα2+α3]X=α4有无穷多解.(1)求a的值;(2)用基础解系表示该方程组的通解.
设A=,对A以列和行分块,分别记为A=[α1,α2,α3,α4]=[β1,β2,β3]T,其中≠0①,=0②,有下述结论:(1)r(A)=2;(2)α2,α4线性无关.(3)β1,β2,β3线性相关;(4)α1,α2,α3线性相关.上
设x→0时,ex2一(ax2+bx+c)是比x2高阶的无穷小,其中a,b,c为常数,则().
某工厂生产甲、乙两种产品,当这两种产品的产量分别为x和y(单位:吨)时的总效益函数为R(x,y)=15x+34y—x2一2xy一4y2一36(单位:万元).已知生产甲种产品每吨需支付排污费用1万元,生产乙种产品每吨需支付排污费2万元.(1)在不限
线性方程组有公共的非零解,求a,b的值和全部公共解。
(I)设函数u(x),v(x)可导,利用导数定义证明[u(x)v(x)]’=u’(x)v(x)+u(x)v’(x);(1I)设函数u1(x),u2(x),…,un(x)可导,f(x)=u1(x)u2(x)…un(x),写出f(x)的求导公式.
设随机变量X,Y相互独立,且X服从二项分布B(1,),Y服从参数为1的指数分布,则概率P{X+Y≥1}等于()
设n阶(n≥3)矩阵A的主对角元均为1,其余元素均为a,且方程组AX=0只有一个非零解组成基础解系,则a=_________.
设F(x)=∫xx+2xesintsintdt,则F(x)().
随机试题
检测系统X和Y所依据的原理不同,却都能检测出所有的产品缺陷,但它们也都会错误地淘汰3%的无缺陷的产品。由于误测造成较高的检测成本,所以通过安装这两套系统,而不是其中的一套系统,而且只淘汰两套系统都认为有缺陷的产品,这样就会省钱。以上论证需要下面哪项假设?
人力资源管理的发展趋势是什么?
根据我国《合同法》的规定,下列各项中,属于《合同法》上规定的合同的是()
下列废水处理方法中属于物理化学法的有()。
下列各项中,免征或不征契税的有()。(2008年)
若旅游者下榻的饭店发生火灾,下列关于导游引导旅游者自救方法不正确的是()。
(2010年安徽.8)一个正方形队列,如减少一行和一列会减少19人,原队列有多少个人?()
以下作品哪一个不是夸美纽斯的代表作?()
在我国,海事法院在审级上相当于()。
Choosethecorrectletter,A,BorC.AdviceonwritingadissertationWhatdoesHowardsaywashismainworryayearpreviousl
最新回复
(
0
)