首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设线性方程组α1x1+α2x2+α3x3+α4x4=β,其中αi(i=1,2,3,4)和β均是四维列向量,有通解k(一2,3,1,0)T+(4,一1,0,3)T。 (Ⅰ)问β能否由α2,α3,α4线性表出,若能表出,则写出表出式;若不能表出,请证明
设线性方程组α1x1+α2x2+α3x3+α4x4=β,其中αi(i=1,2,3,4)和β均是四维列向量,有通解k(一2,3,1,0)T+(4,一1,0,3)T。 (Ⅰ)问β能否由α2,α3,α4线性表出,若能表出,则写出表出式;若不能表出,请证明
admin
2020-06-11
58
问题
设线性方程组α
1
x
1
+α
2
x
2
+α
3
x
3
+α
4
x
4
=β,其中α
i
(i=1,2,3,4)和β均是四维列向量,有通解k(一2,3,1,0)
T
+(4,一1,0,3)
T
。
(Ⅰ)问β能否由α
2
,α
3
,α
4
线性表出,若能表出,则写出表出式;若不能表出,请证明之;
(Ⅱ)α
4
能否由α
1
,α
2
,α
3
线性表出,说明理由;
(Ⅲ)求线性方程组(α
1
+β,α
1
,α
2
,α
3
,α
4
)x=β的通解。
选项
答案
(Ⅰ)由已知条件可知β可由α
i
(i=1,2,3,4)线性表出,且 β=(4—2k)α
1
+(3k一1)α
2
+kα
3
+3α
4
, 其中k为任意常数。 当k=2时,则可得到β=5α
2
+2α
3
+3α
4
。因此β能由α
2
,α
3
,α
4
线性表出。 (Ⅱ)方程组的通解为k(一2,3,1,0)
T
+(4,一1,0,3)
T
,则系数矩阵的秩和增广矩阵的秩均为3,且一2α
1
+3α
2
+α
3
=0,得 α
3
=2α
1
一3α
2
。 (*) 假设α
4
能由α
1
,α
2
,α
3
线性表出,则存在不全为零的数k
1
,k
2
,k
3
使 α
4
=k
1
α
1
+k
2
α
1
+k
3
α
3
, 将(*)式代入可得 α
4
=k
1
α
1
+k
2
α
1
+k
3
α
3
=(k
1
+2k
3
)α
1
+(k
2
—3k
3
)α
2
, 因此可知r(α
1
,α
2
,α
3
,α
4
)≤2,该结果与r(α
1
,α
2
,α
3
,α
4
)=3矛盾,因此α
4
不能由α
1
,α
2
,α
3
线性表出。 (Ⅲ)因为方程组(α
1
,α
2
,α
3
,α
4
)x=β有通解k(一2,3,1,0)
T
+(4,一1,0,3)
T
,因此可知 r(α
1
+β,α
1
,α
2
,α
3
,α
4
)=r(α
1
+β,α
1
,α
2
,α
3
,α
4
,β)=r(α
1
,α
2
,α
3
,α
4
)=3, 故方程组(α
1
+β,α
1
,α
2
,α
3
,α
4
)x=β有解,由 0.(α
1
+β)+4α
1
一α
2
+0.α
3
+3α
4
=β,得η
1
=(0,4,一1,0,3)
T
; 0.(α
1
+β)一2α
1
+3α
2
+α
3
+0.α
4
=0,得ξ=(0,一2,3,1,0)
T
; (α
1
+β)一α
1
+0.α
2
+0.α
3
+0.α
4
=β,得η
2
=(1,一1,0,0,0)
T
, 得所求方程组的通解为 k
1
ξ+k
2
(η
1
一η
2
)+η
1
=k
1
[*]。 其中ξ与η
1
一η
2
不成比例,是线性无关的。
解析
转载请注明原文地址:https://kaotiyun.com/show/mm84777K
0
考研数学二
相关试题推荐
设0<a<b,证明:
[*]
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量组,满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3.(1)求作矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B.(2)求A的特征值.(3)求作可逆矩阵P,使
由当χ→0时,1-cosaχ~[*]χ2得[*]因为sinaχ=aχ-[*]χ3+o(χ3),asinχ=a[χ-[*]+o(χ3)]=aχ-[*]χ3+o(χ3)[*]
设φ(x)是以2π为周期的连续函数,且Φ’(x)=φ(x),Φ(0)=0.方程是否有以2π为周期的解?若有,请写出所需条件,若没有,请说明理由.
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵,试证:BTAB为正定矩阵的充分必要条件是r(B)=n。
求极限。
设u=f(r),而f(r)具有二阶连续导数,则=()
设二维随机变量(X,Y)在平面区域G上服从均匀分布,其中G是由x轴,y轴以及直线y=2x+1所围成的三角形域,则(X,Y)的关于X的边缘概率密度为()
随机试题
凡是有关经济社会发展和人民群众切身利益的事项,都要进行合法性、合理性、可行性和可控性评估。()
某县检察机关以抢夺罪对被告人柳桌提起公诉。县人民法院经过审理判处柳某有期徒刑3年。宣判后,柳某表示悔罪服判,决不上诉,出庭支持公诉的检察人员也表示法院判决结果合理合法,检察机关不会抗诉。问题:(1)就本案而言,法院是否可以在宣判后就将柳某送交监狱服刑,为什
依据《建设工程安全生产管理条例》规定,下列关于设计单位的安全责任不正确的是( )。
施工图预算的审查方法包括()。
基金信息披露的及时性原则要求以最快的速度公开信息,在重大事件发生之日起()日内披露临时报告。
在()中,使用当前及历史价格对未来进行预测将是徒劳的。
A公司现销方式每年可销售产品800000件,单价1元,变动成本率为70%,固定成本为120000元,该公司尚有30%的剩余生产能力。为了扩大销售,该公司拟改用赊销政策,信用政策准备调整为“3/0,2/30,N/60”。有关部门预测,年销售量可增至10000
资本资产定价模型的目的是()。
《蒙娜丽莎》《最后的晚餐》是画家()的著名绘画作品。
下图所示的数据模型属于
最新回复
(
0
)