首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[-2,2]上二阶可导,且|f(x)|≤1,又f2(0)+[f’(0)]2=4. 证明:在(-2,2)内至少存在一点ξ,使得f(ξ)+f"(ξ)=0.
设函数f(x)在[-2,2]上二阶可导,且|f(x)|≤1,又f2(0)+[f’(0)]2=4. 证明:在(-2,2)内至少存在一点ξ,使得f(ξ)+f"(ξ)=0.
admin
2021-07-15
30
问题
设函数f(x)在[-2,2]上二阶可导,且|f(x)|≤1,又f
2
(0)+[f’(0)]
2
=4.
证明:在(-2,2)内至少存在一点ξ,使得f(ξ)+f"(ξ)=0.
选项
答案
由拉格朗日中值定理有 f(0)-f(-2)=2f’(ξ
1
),-2<ξ
1
<0 f(2)-f(0)=2f’(ξ
2
),0<ξ
2
<2 由|f(x)|≤1知,|f’(ξ
1
)|=[*]≤1,|f(ξ
2
)|=[*]≤1 令ψ(x)=f
2
(x)+[f’(x)]
2
,则有ψ(ξ
1
)≤2,ψ(ξ
2
)≤2 因为ψ(x)在[ξ
1
,ξ
2
]上连续,且ψ(0)=4,设ψ(x)在[ξ
1
,ξ
2
]上的最大值在ξ∈(ξ
1
,ξ
2
)[*](-2,2)处取到, 则ψ(ξ)≥4,且ψ(x)在[ξ
1
,ξ
2
]上可导,由费马定理有ψ’(ξ)=0,即 2f(ξ)·f’(ξ)+2f’(ξ)·f"(ξ)=0 因为|f(x)|≤1,且ψ(ξ)≥4,所以f’(ξ)≠0,于是有 f(ξ)+f"(ξ)=0,ξ∈(-2,2).
解析
转载请注明原文地址:https://kaotiyun.com/show/mmy4777K
0
考研数学二
相关试题推荐
A、 B、 C、 D、 B
a=-1,b=-1,c=1
设函数f(x)在区间(一δ,δ)内有定义,若当x∈(一δ,δ)时,恒有|f(x)|≤x2,则x=0必是f(x)的()
设函数f(x)在(一∞,+∞)上有定义,则下述命题中正确的是()
设f(x)在[0,a]上有一阶连续导数,证明至少存在一点ξ∈[0,a],使得∫0af(x)dx=af(0)+f’(ξ)。
下列命题中①如果矩阵AB=E,则A可逆且A一1=B;②如果n阶矩阵A,B满足(AB)2=E,则(BA)2=E;③如果矩阵A,B均为n阶不可逆矩阵,则A+B必不可逆;④如果矩阵A,B均为n阶不可逆矩阵,则AB必不可逆。正确的是()
求点P(1,2,一1)到直线的距离d.
设f(χ)在[a,b]上连续,证明:∫abf(χ)dχ=∫abf(a+b-χ)dχ.
设C1,C2是任意两条过原点的曲线,曲线C介于C1,C2之间,如果过C上任意一点P引平行于χ轴和y轴的直线,得两块阴影所示区域A,B有相等的面积,设C的方程是y=χ2,C1的方程是y=χ2,求曲线C2的方程.
设抛物线y=ax2+bx+2lnc过原点,当0≤x≤1时,y≥0,又已知该抛物线与x轴及直线x=1所围图形的面积为1/3.试确定a,b,c,使此图形绕x轴旋转一周而成的旋转体的体积V最小.
随机试题
比较某地区某年两种疾病的人数多少,可绘制
企业为促进商品销售,给予购买方的商业折扣,应按扣除商业折扣后的金额确定销售收入计算企业所得税应纳税所得额。()
紫砂壶的主要特点是()。
“世界最遥远的距离,莫过于我们坐在一起,你却在玩手机。”有人因为使用手机成瘾,让手机变成了“手雷”,严重影响身心健康。对此,我们应该()。①正视手机控制社会的事实②适度使用,防止矛盾的转化③辩证否定手机功能的拓展
从管理学的角度来看,激励所包含的三个关键要素是()。
许久无蝴蝶问津的云南大理蝴蝶泉景区,日前终于______了。每天都有约2万只蝴蝶光顾蝴蝶泉边,这些可爱的小精灵扇动着翅膀,______在漫空中,再现了蝴蝶泉的优美风景。依次填入划横线部分最恰当的一项是()。
设执行以下程序段时依次输入2,4,6,执行结果为 Dima(4)AsInteger Dimb(4)ASInteger Fork=0To2 a(k+1)=Val(InputBox("Enterdata:")) b(
请在【答题】菜单下选择【进入考生文件夹】命令,并按照题目要求完成下面的操作。注意:以下的文件必须都保存在考生文件夹下。期末考试结束了,初三(14)班的班主任助理王老师需要对本班学生的各科考试成绩进行统计分析,并为每个学生制作一份
WhichofthefollowingaboutAustraliaisNOTtrue?
A、Inapartment.B、Inmotel.C、Inthedowntown.D、Intheareawherehousesarecheaper.D
最新回复
(
0
)