首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)求y"一7y’+12y=x满足初始条件y(0)=的特解; (Ⅱ)求y"+a2y=8cosbx的通解,其中a>0,b>0为常数; (Ⅲ)求y"+4y’+4y=ex的通解,其中a为常数; (Ⅳ)求y"+y=x3一x+2的通解.
(Ⅰ)求y"一7y’+12y=x满足初始条件y(0)=的特解; (Ⅱ)求y"+a2y=8cosbx的通解,其中a>0,b>0为常数; (Ⅲ)求y"+4y’+4y=ex的通解,其中a为常数; (Ⅳ)求y"+y=x3一x+2的通解.
admin
2017-10-23
37
问题
(Ⅰ)求y"一7y’+12y=x满足初始条件y(0)=
的特解;
(Ⅱ)求y"+a
2
y=8cosbx的通解,其中a>0,b>0为常数;
(Ⅲ)求y"+4y’+4y=e
x
的通解,其中a为常数;
(Ⅳ)求y"+y=x
3
一x+2的通解.
选项
答案
(Ⅰ)对应齐次微分方程的特征方程为λ
2
一7λ+12=0,它有两个互异的实根λ
1
=3与λ
2
=4,所以其通解为 [*](x)=C
1
e
3x
+C
2
e
4x
,其中C
1
与C
2
是两个任意常数. 由于0不是特征根,所以非齐次微分方程的特解应具有形式y
*
(x)=Ax+B.代入方程可得A=[*]+C
1
e
3x
+C
2
e
4x
. [*] (Ⅱ)由于对应齐次微分方程的特征根为±ai,所以其通解为[*](x)=C
1
cosax+C
2
sinax.求原非齐次微分方程的特解,需分两种情况讨论: ①当a≠b时,特解的形式应为Aeosbx+Bsinbx,将其代入原方程可得 A=[*],B=0. 所以通解为y(x)=[*]cosbx+C
1
cosax+C
2
sinax,其中C
1
与C
2
是两个任意常数. ②当a=b时,特解的形式应为Axeosax+Bxsinax,代入原方程可得 A=0.B=[*]. 所以原方程的通解为y(x)=[*]xsinax+C
1
cosax+C
2
sinax,其中C
1
与C
2
是两个任意常数. (Ⅲ)特征方程是λ
2
+4λ+4=0,它有相等二实根λ
1
=λ
2
=一2,所以其对应齐次微分方程的通解为y(x)=(C
1
+C
2
x)e
—2x
.非齐次微分方程的特解的形式与a是不是特征根有关. 若a≠一2,则应设特解为y
*
(x)=Ae
ax
,其中A是待定系数.代入方程可得 A(a
2
+4a+4)e
ax
=e
ax
→[*], 所以,当a≠一2时通解为y(x)=(C
1
+C
2
x)e
—2x
+[*],其中C
1
与C
2
是两个任意常数. 若a=一2,由于它是重特征根,则应设特解为y
*
=Ax
2
e
—2x
,其中A是待定系数.代入方程可得 A[(2—8x+4x
2
)+4(2x一2x
2
)+4x
2
]e
—2x
=e
—2x
,即 2Ae
—2x
=e
—2x
. 于是可得出A=[*].所以,当a=一2时通解为y(x)=(C
1
+C
2
x+[*]x
2
)e
—2x
(其中C
1
与C
2
是两个任意常数). (Ⅳ)方程的自由项是三次多项式f(x)=x
3
一x+2,方程的特征根满足
2
+1=0,从而是共轭复根λ=i和λ=一i.所以,对应齐次微分方程的通解是[*](x)=C
1
cosx+C
2
sinx,而非齐次微分方程的特解可取为y
*
(x)=Ax
3
+Bx
2
+Cx+D,代入方程可得待定常数A,B,C,D应满足 Ax
3
+Bx
2
+(6A+C)x+2B+D=x
3
一x+2, 由此可确定A=1,B=0,C=一7,D=2.所以原方程的通解为 y(x)=C
1
cosx+C
2
sinx+x
3
一7x+2,其中C
1
与C
2
是两个任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/nEX4777K
0
考研数学三
相关试题推荐
设A为三阶矩阵,A的各行元素之和为4,则A有特征值__________,对应的特征向量为__________
设A是三阶矩阵,其三个特征值为,1,则|4A*+3E|=__________.
已知二元函数f(x,y)满足=u2+v2,求a,b.
设A为n阶非奇异矩阵,α是n维列向量,b为常数,P=(1)计算PQ;(2)证明PQ可逆的充分必要条件是αTA-1α≠b.
甲、乙两人从1,2,…,15中各取一个数,设甲取到的数是5的倍数,求甲数大于乙数的概率.
将编号为1,2,3的三本书随意排列在书架上,求至少有一本书从左到右排列的序号与它的编号相同的概率.
设每次试验成功的概率为0.2,失败的概率为0.8,设独立重复试验直到成功为止的试验次数为X,则E(X)=________.
用变量代换x=sint将方程(1一x2)一4y=0化为y关于t的方程,并求微分方程的通解.
设总体X~U[0,θ],其中θ>0,求θ的极大似然估计量,判断其是否是θ的无偏估计量.
微分方程的通解是________.
随机试题
下列不符合子宫内膜增生症的描述是
种植义齿修复中,金属支架的作用是
A.囊内切除B.边缘性切除C.广泛性切除D.根治性切除E.根治性截肢化疗有效的ⅡA期股骨下端骨肉瘤比较适合的治疗是
结构化程序的三种基本控制结构是()。
有三个关系R,S和T如下图所示:则由关系R和S得到关系T的运算是
Ididn’tgototheparty,butIdowishI_____there.
Thesedatawillbeofconsiderableuseforidentifyingandanalyzingenvironmentaldegradation,andthancraftingworkablesolut
A、Inasupermarket.B、Atapostoffice.C、Atalibrary.D、Atabank.A女士说自己不记得带信用卡,钱包里只有30元钱,问男士有没有钱。男士说自己也没有钱,不如把购物车里的一些物品放回产品架
Onedayapoliceofficermanagertogetsomefreshmushrooms.Hewassopleasedwithwhathehadboughtthatheofferedto【S1】__
We’veBeenImaginingMountainsAllWrong,SayScientistsA)Fromthesimplestsketchestothemostadvancedscientificmodels
最新回复
(
0
)