首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)求y"一7y’+12y=x满足初始条件y(0)=的特解; (Ⅱ)求y"+a2y=8cosbx的通解,其中a>0,b>0为常数; (Ⅲ)求y"+4y’+4y=ex的通解,其中a为常数; (Ⅳ)求y"+y=x3一x+2的通解.
(Ⅰ)求y"一7y’+12y=x满足初始条件y(0)=的特解; (Ⅱ)求y"+a2y=8cosbx的通解,其中a>0,b>0为常数; (Ⅲ)求y"+4y’+4y=ex的通解,其中a为常数; (Ⅳ)求y"+y=x3一x+2的通解.
admin
2017-10-23
64
问题
(Ⅰ)求y"一7y’+12y=x满足初始条件y(0)=
的特解;
(Ⅱ)求y"+a
2
y=8cosbx的通解,其中a>0,b>0为常数;
(Ⅲ)求y"+4y’+4y=e
x
的通解,其中a为常数;
(Ⅳ)求y"+y=x
3
一x+2的通解.
选项
答案
(Ⅰ)对应齐次微分方程的特征方程为λ
2
一7λ+12=0,它有两个互异的实根λ
1
=3与λ
2
=4,所以其通解为 [*](x)=C
1
e
3x
+C
2
e
4x
,其中C
1
与C
2
是两个任意常数. 由于0不是特征根,所以非齐次微分方程的特解应具有形式y
*
(x)=Ax+B.代入方程可得A=[*]+C
1
e
3x
+C
2
e
4x
. [*] (Ⅱ)由于对应齐次微分方程的特征根为±ai,所以其通解为[*](x)=C
1
cosax+C
2
sinax.求原非齐次微分方程的特解,需分两种情况讨论: ①当a≠b时,特解的形式应为Aeosbx+Bsinbx,将其代入原方程可得 A=[*],B=0. 所以通解为y(x)=[*]cosbx+C
1
cosax+C
2
sinax,其中C
1
与C
2
是两个任意常数. ②当a=b时,特解的形式应为Axeosax+Bxsinax,代入原方程可得 A=0.B=[*]. 所以原方程的通解为y(x)=[*]xsinax+C
1
cosax+C
2
sinax,其中C
1
与C
2
是两个任意常数. (Ⅲ)特征方程是λ
2
+4λ+4=0,它有相等二实根λ
1
=λ
2
=一2,所以其对应齐次微分方程的通解为y(x)=(C
1
+C
2
x)e
—2x
.非齐次微分方程的特解的形式与a是不是特征根有关. 若a≠一2,则应设特解为y
*
(x)=Ae
ax
,其中A是待定系数.代入方程可得 A(a
2
+4a+4)e
ax
=e
ax
→[*], 所以,当a≠一2时通解为y(x)=(C
1
+C
2
x)e
—2x
+[*],其中C
1
与C
2
是两个任意常数. 若a=一2,由于它是重特征根,则应设特解为y
*
=Ax
2
e
—2x
,其中A是待定系数.代入方程可得 A[(2—8x+4x
2
)+4(2x一2x
2
)+4x
2
]e
—2x
=e
—2x
,即 2Ae
—2x
=e
—2x
. 于是可得出A=[*].所以,当a=一2时通解为y(x)=(C
1
+C
2
x+[*]x
2
)e
—2x
(其中C
1
与C
2
是两个任意常数). (Ⅳ)方程的自由项是三次多项式f(x)=x
3
一x+2,方程的特征根满足
2
+1=0,从而是共轭复根λ=i和λ=一i.所以,对应齐次微分方程的通解是[*](x)=C
1
cosx+C
2
sinx,而非齐次微分方程的特解可取为y
*
(x)=Ax
3
+Bx
2
+Cx+D,代入方程可得待定常数A,B,C,D应满足 Ax
3
+Bx
2
+(6A+C)x+2B+D=x
3
一x+2, 由此可确定A=1,B=0,C=一7,D=2.所以原方程的通解为 y(x)=C
1
cosx+C
2
sinx+x
3
一7x+2,其中C
1
与C
2
是两个任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/nEX4777K
0
考研数学三
相关试题推荐
设f(x)连续且关于x=T对称,a<T<b.证明:∫abf(x)dx(z)dx=2∫Tbf(t)dx+∫a2T—bf(x)dx.
求
设随机变量X~U(0,1),在X=x(0<x<1)下,Y~U(0,x).(1)求X,Y的联合密度函数;(2)求Y的边缘密度函数.
设一电路由三个电子元件串联而成,且三个元件工作状态相互独立,每个元件的无故障工作时间服从参数为λ的指数分布,设电路正常工作的时间为T,求T的分布函数.
设f(x)二阶连续可导,且f"(x)≠0,又f(x+h)=f(x)+f’(x+θh)h(0<θ<1).证明:.
对常数p,讨论幂级数的收敛区间.
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减少,f(0)=0.试应用拉格朗日中值定理证明:f(a+b)≤f(A)+f(b),其中常数a,b满足条件0≤a≤b≤a+b≤c.
微分方程y″+4y=2x2在原点处与y=x相切的特解是__________.
设f(t)连续并满足f(t)=cos2t+f(s)sinsds,求f(t).
设f(t)连续并满足f(t)=cos2t+∫0xf(t)sinsds,求f(t)。
随机试题
以下因素中,不会引起病理性颅内压增高的是
中央处理器有两种工作状态,当它处于目态时不允许执行的指令是()
细菌性痢疾的临床表现不包括
甲公司在面积为10000m2。的土地上开发建设一写字楼,建筑覆盖率为45%,总楼层为6层,一层和二层面积相等,三层以上为标准层,总建筑面积为20000m2。建成后,某房地产估价机构接受甲公司委托对该写字楼进行估价,经查验会计凭证以及会计师事务所的审计报告,
下面关于水泥混凝土路面施工说法错误的是()
“一带一路”是我国基于古代丝绸之路的历史符号所构建的推动国际经贸交流与合作的顶层国家发展倡议。下列历史人物中未曾对古代丝绸之路的开拓与发展做出突出贡献的是:
东汉末年发动黄巾起义的民间教派是
项目验收阶段监理工作的主要内容不包括________。
数据管理技术发展的三个阶段中,()没有专门的软件对数据进行管理。I.人工管理阶段II.文件系统阶段III.数据库阶段
Whattimeisit?
最新回复
(
0
)