首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上二阶可导,且|f″(x)|≤|(x∈[0,1]),又f(0)=f(1),证明: |f′(x)|≤1/2(x∈[0,1]).
设f(x)在[0,1]上二阶可导,且|f″(x)|≤|(x∈[0,1]),又f(0)=f(1),证明: |f′(x)|≤1/2(x∈[0,1]).
admin
2022-08-19
71
问题
设f(x)在[0,1]上二阶可导,且|f″(x)|≤|(x∈[0,1]),又f(0)=f(1),证明:
|f′(x)|≤1/2(x∈[0,1]).
选项
答案
由泰勒公式得 f(0)=f(x)-f′(x)x+1/2f″(ξ
1
)x
2
,ξ
1
∈(0,x), f(1)=f(x)+f′(x)(1-x)+1/2f″(ξ
2
)(1-x
2
)
2
,ξ
2
∈(x,1), 两式相减,得f′(x)=1/2f″(ξ
1
)x
2
-1/2f″(ξ
2
)(1-x)
2
. 两边取绝对值,再由|f″(x)|≤1,得 |f′(x)|≤1/2[x
2
+(1-x)
2
]=(x-1/2)
2
+1/4≤1/2.
解析
转载请注明原文地址:https://kaotiyun.com/show/nNR4777K
0
考研数学三
相关试题推荐
设f(x),g(x)在区间[a,b]上连续,且g(x)<f(x)<m,则由曲线y=g(x),y=f(x)及直线x=a,x=b所围成的平面区域绕直线y=m旋转一周所得旋转体体积为().
求幂级数(2n+1)xn的收敛域及和函数.
设f(x)二阶可导,且∫0xf(t)dt+∫0xtf(x-t)dt=x,求f(x).
求微分方程y’-2xy=ex2满足初始条件y(0)=1的特解.
设y1(x),y2(x)为y’+P(x)y=Q(x)的特解,又Py1(x)+2qy2(x)为y’+P(x)y=0的解,py1(x)-qy2(x)为y’+P(x)y=Q(x)的解,则p=_________,q=_________.
设f(x),g(x)在[a,b]上连续,证明:存在ξ∈(a,b),使得f(ξ)∫ξbg(x)dx=g(ξ)∫aξf(x)dx.
设f(x)=a1ln(1+x)+a2ln(1+2x)+…+anln(1+nx),其中a1,a2,…,an为常数,且对一切x有|f(x)|≤|ex-1|.证明:|a1+2a2+…+nan|≤1.
下列说法正确的是().
设总体X服从正态分布N(μ,σ2)(σ>0),X1,X2,…,Xn为来自总体X的简单随机样本,令Y=|Xi-μ|,求Y的数学期望与方差.
设n维向量α1,α2,…,αs的秩为r,则下列命题正确的是
随机试题
以下有关稳态的描述正确的说法是()。
有X和Y两种元素,形成化合物的化学式为X2Y,其式量为44,X元素的质量分数为63.6%,计算X和Y的相对原子质量。
关于气管、支气管正位体层的叙述,错误的是
最常见的口腔癌是
片剂的泡腾崩解剂薄膜衣片剂的成膜材料
药师可不承担责任的是()。
每个人的生活都有甜和苦。
在教育政策体系中,()是最基本、最重要的教育政策。这些教育政策所要解决的是一个国家教育改革与发展中最关键、最基本的问题。
下面关于HDMI的叙述中,错误的是()。
Today’spolicemeninlargecitiesthroughouttheworld【C1】______onmodeminventionstohelpthemintheirwork.Inmostplacesm
最新回复
(
0
)