首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
考虑到待证不等式的构造及其性质:当a=b时,不等式化为等式,可将b换为x,令 [*] 则φ(a)=0,且[*] 由上题知,[*]故[*]由f(x)单调增加,有[*]于是[*]故φ(x)单调不减,又φ(a)=0,则φ(b)
考虑到待证不等式的构造及其性质:当a=b时,不等式化为等式,可将b换为x,令 [*] 则φ(a)=0,且[*] 由上题知,[*]故[*]由f(x)单调增加,有[*]于是[*]故φ(x)单调不减,又φ(a)=0,则φ(b)
admin
2021-01-25
84
问题
选项
答案
考虑到待证不等式的构造及其性质:当a=b时,不等式化为等式,可将b换为x,令 [*] 则φ(a)=0,且[*] 由上题知,[*]故[*]由f(x)单调增加,有[*]于是[*]故φ(x)单调不减,又φ(a)=0,则φ(b)≥0,即[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/o8x4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 C
[2005年]已知齐次线性方程组(I)与方程组(Ⅱ)同解,求a,b,c的值.
[2008年]设则在实数域上与A合同的矩阵为().
[2017年]已知矩阵则().
[2007年]在区间(0,1)中随机地取两个数,则两个数之差的绝对值小于1/2的概率为________.
[2012年]设其中c1,c2,c3,c4为任意常数,则下列向量组线性相关的为().
[2011年]设向量组α1=[1,0,1]T,α2=[0,1,1]T,α3=[1,3,5]T不能由向量组β1=[1,1,1]T,β2=[1,2,3]T,β3=[3,4,a]T线性表示.求a的值;
设有n元实二次型f(x1,x2,…,xn)=(x1+a1x2)2+(x2+a2x3)2+…+(xn-1+an-1xn)2+(xn+anx1)2,其中ai(i=1,2,…,n)为实数.试问当a1,a2,…,an满足何种条件时,该
(2014年)设函数f(u)具有2阶连续导数,z=f(excosy)满足=(4z+excosy)e2x。若f(0)=0,f’(0)=0,求f(u)的表达式。
设f(x)在[a,b]上二阶可导,且f(x)>0,下面不等式f(a)(b一a)<∫abf(x)dx<(b—a)成立的条件是()
随机试题
下列何种疾病为器官特异性自身免疫病
纸张的机械性能是衡量纸张耐久性的重要指标,其中不包括
A.血虚证B.阳气暴脱C.脾胃气虚D.虚阳上越E.阳虚水泛上述各项,可见面色咣白而虚浮症状的是
法洛四联症最早且主要的表现是
下列关于领导的特征说法正确的有:()。
下列各项工程中,需要编制施工组织总设计的有( )。
所有出境集装箱均应实施卫生检疫。( )
大学校长:教授
考虑二元函数的下面4条性质(I)f(x,y)在点(xo,yo)处连续;(Ⅱ)f(x,y)在点(xo,yo)处的两个偏导数连续;(Ⅲ)f(x,y)在点(xo,yo)处可微;(Ⅳ)f(x,y)在点(xo,yo)处的两个偏导数存在;
Evenachildknowsthatnoddingheadmeans"Yes".ButsomepeopleWouldprobably(56)whentheyfirstcametoIndia.Whenthey
最新回复
(
0
)