首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4,β为4维列向量,A=(α1,α2,α3,α4),若Ax=β的通解为 (—1.1,0,2) T+k(1,—1,2,0) T, 则 求α1,α2,α3,α4,β的一个极大无关组.
设α1,α2,α3,α4,β为4维列向量,A=(α1,α2,α3,α4),若Ax=β的通解为 (—1.1,0,2) T+k(1,—1,2,0) T, 则 求α1,α2,α3,α4,β的一个极大无关组.
admin
2019-08-26
42
问题
设α
1
,α
2
,α
3
,α
4
,β为4维列向量,A=(α
1
,α
2
,α
3
,α
4
),若Ax=β的通解为
(—1.1,0,2)
T
+k(1,—1,2,0)
T
,
则
求α
1
,α
2
,α
3
,α
4
,β的一个极大无关组.
选项
答案
因为(—1,1,0,2)
T
是Ax=β的解,则β=—ɑ
1
,ɑ
2
,2ɑ
4
. 又因为(1,—1,2,0)
T
是Ax=0的解,则ɑ
1
—ɑ
2
+ɑ
3
=0. 所以,β和ɑ
3
都可由ɑ
1
,ɑ
2
,ɑ
4
线性表示. 又由R(ɑ
1
,ɑ
2
,ɑ
3
,ɑ
4
,β)=R(ɑ
1
,ɑ
2
,ɑ
3
,ɑ
4
)=3,所以ɑ
1
,ɑ
2
,ɑ
4
是极大无关组.
解析
【思路探索】第一题利用反证法;
第二题由条件所给方程组的解,来确定向量之间的线性关系.
转载请注明原文地址:https://kaotiyun.com/show/oSJ4777K
0
考研数学三
相关试题推荐
若A=,则(A*)-1=___________.
讨论下列函数的连续性并判断间断点的类型:
铁路一编组站随机地编组发往三个不同地区E1,E2和E3的各2节、3节和4节车皮,求发往同一地区的车皮恰好相邻的概率p.
已知α1=(1,1,0,2)T,α2=(一1,1,2,4)T,α3=(2,3,a,7)T,α4=(一1,5,一3,a+6)T,β=(1,0,2,b)T,问a,b取何值时,(Ⅰ)β不能由α1,α2,α3,α4线性表示?(Ⅱ)β能用α1,α2,α3,α4线性表
设二维连续型随机变量(X,Y)在区域D上服从均匀分布,其中D={(x,y)|x+y|≤1,|x一y|≤1},求X的边缘密度fX(x)与在X=0条件下,关于Y的条件密度fY|X(y|0).
设二维随机变量(X,Y)的联合分布为其中a,b,c为常数,且EXY=一0.1,P{X≤0|Y≥2}=,记Z=X+Y.求:a,b,c之值;
设随机变量X1与X2相互独立,其分布函数分别为则X1+X2的分布函数F(x)=
求下列定积分:
求二阶常系数线性微分方程y"+λy’=2x+1的通解,其中λ为常数.
随机试题
在特定的反应条件下,酶的天然底物的米氏常数
同轴式高压电缆的结构从内向外排列,正确的是
女患者,43岁,带下赤白,质稍黏无臭,阴部灼热,五心烦热,失眠多梦,舌红,少苔,脉细数,中医辨证为
A.长强B.命门C.水沟D.素髎E.哑门、风府
历代宫廷肴馔的风味都具有共同的特点,即华贵珍奇、配菜讲究典式规格。()
我国女宇航员王亚平成功完成了世界上第二次太空授课,其授课所处的航天器是()。
政府机构设置的根据是()。
在职称评审过程中,各级评审组织几乎无法看到申报人的艺术实践能力,只能看到表格栏目里的论文和项目。在唯论文是重的标准下,音乐理论的教师还能体现一些真才实学,而表演艺术的教师则只能扬短避长、______。填入画横线部分最恰当的一项是()。
铁轨:火车:列车员
关于实行民族区域自治制度,下列说法中错误的是()
最新回复
(
0
)